数论:求逆元的三种模板

本文深入探讨了模数运算中的关键算法,包括快速幂、费马小定理求逆元、扩展欧几里得算法求逆元等,并提供了详细的代码实现。通过这些算法,可以高效地解决大规模数据下的逆元求解问题,适用于竞赛编程和复杂算法设计。
摘要由CSDN通过智能技术生成
typedef long long ll
int n;
int mode;
ll inv[maxn];

void init(int mode){//线性求逆元
    inv[0]=inv[1]=1;
    for (int i=2;i<maxn;i++){
        inv[i] = ((mode-mode/i)*inv[mode % i]) % mode;
    }
}

ll mypow(ll a,ll b){//快速幂
    ll ret=1;
    while(b){
        if(b&1){
            ret=ret*a%mode;
        }
        a=a*a%mode;
        b>>=1;
    }
    return ret;
}

ll C_inv(ll x){//快速幂——费马小定理求逆元
    return mypow(x,mode-2);
}

void gcd(ll a,ll b,ll &d,ll &x,ll &y) {
    if(!b) { d=a; x=1; y=0;}
    else {gcd(b,a%b,d,y,x); y -= x*(a/b);}
}

ll gcd_inv(ll a,ll n) {//扩展欧几里得求逆元
    ll d,x,y;
    gcd(a,n,d,x,y);
    return d == 1 ? (x+n) % n : -1;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值