typedef long long ll
int n;
int mode;
ll inv[maxn];
void init(int mode){//线性求逆元
inv[0]=inv[1]=1;
for (int i=2;i<maxn;i++){
inv[i] = ((mode-mode/i)*inv[mode % i]) % mode;
}
}
ll mypow(ll a,ll b){//快速幂
ll ret=1;
while(b){
if(b&1){
ret=ret*a%mode;
}
a=a*a%mode;
b>>=1;
}
return ret;
}
ll C_inv(ll x){//快速幂——费马小定理求逆元
return mypow(x,mode-2);
}
void gcd(ll a,ll b,ll &d,ll &x,ll &y) {
if(!b) { d=a; x=1; y=0;}
else {gcd(b,a%b,d,y,x); y -= x*(a/b);}
}
ll gcd_inv(ll a,ll n) {//扩展欧几里得求逆元
ll d,x,y;
gcd(a,n,d,x,y);
return d == 1 ? (x+n) % n : -1;
}
数论:求逆元的三种模板
最新推荐文章于 2023-03-04 20:10:02 发布
本文深入探讨了模数运算中的关键算法,包括快速幂、费马小定理求逆元、扩展欧几里得算法求逆元等,并提供了详细的代码实现。通过这些算法,可以高效地解决大规模数据下的逆元求解问题,适用于竞赛编程和复杂算法设计。
摘要由CSDN通过智能技术生成