CUDA5.5入门1. host和gpu之间的通信

《cuda programming 》  Shane Cook   第5章 第一节

cpu和gpu有各自独立的内存空间,两者不可以直接访问。

每个线程的执行代码是一样的,数据不同。

Thread---->Warp------>Block------>Grid

入门代码是并行加法:  1.cpu端的数组

                              2.开辟gpu的buffer : cudaMalloc((void**)&dev_a,arraySize*sizeof(int));

                              3.把host数据传入buffer  :    cudaMemcpy(dev_a,a,arraySize*sizeof(int),cudaMemcpyHostToDevice);

                             4.在Kernel中每个Thread进行相应的计算:  addKernelArray<<<1,arraySize>>>(dev_c,dev_b,dev_a);

                             5.把devcudaMemcpy(c,dev_c,arraySize*sizeof(int),cudaMemcpyDeviceToHost);

 

 

 结果:

 

2 3 4 5 6
ThreadID:0 Block:0 warp:0 eachBT:0 wrapSize32
ThreadID:1 Block:0 warp:0 eachBT:1 wrapSize32
ThreadID:2 Block:0 warp:0 eachBT:2 wrapSize32
ThreadID:3 Block:0 warp:0 eachBT:3 wrapSize32
ThreadID:4 Block:0 warp:0 eachBT:4 wrapSize32
ThreadID:5 Block:0 warp:0 eachBT:5 wrapSize32
ThreadID:6 Block:0 warp:0 eachBT:6 wrapSize32
ThreadID:7 Block:0 warp:0 eachBT:7 wrapSize32
ThreadID:8 Block:0 warp:0 eachBT:8 wrapSize32
ThreadID:9 Block:0 warp:0 eachBT:9 wrapSize32
ThreadID:10 Block:0 warp:0 eachBT:10 wrapSize32
ThreadID:11 Block:0 warp:0 eachBT:11 wrapSize32
ThreadID:12 Block:0 warp:0 eachBT:12 wrapSize32
ThreadID:13 Block:0 warp:0 eachBT:13 wrapSize32
ThreadID:14 Block:0 warp:0 eachBT:14 wrapSize32
ThreadID:15 Block:0 warp:0 eachBT:15 wrapSize32
ThreadID:16 Block:0 warp:0 eachBT:16 wrapSize32
ThreadID:17 Block:0 warp:0 eachBT:17 wrapSize32
ThreadID:18 Block:0 warp:0 eachBT:18 wrapSize32
ThreadID:19 Block:0 warp:0 eachBT:19 wrapSize32
ThreadID:20 Block:0 warp:0 eachBT:20 wrapSize32
ThreadID:21 Block:0 warp:0 eachBT:21 wrapSize32
ThreadID:22 Block:0 warp:0 eachBT:22 wrapSize32
ThreadID:23 Block:0 warp:0 eachBT:23 wrapSize32
ThreadID:24 Block:0 warp:0 eachBT:24 wrapSize32
ThreadID:25 Block:0 warp:0 eachBT:25 wrapSize32
ThreadID:26 Block:0 warp:0 eachBT:26 wrapSize32
ThreadID:27 Block:0 warp:0 eachBT:27 wrapSize32
ThreadID:28 Block:0 warp:0 eachBT:28 wrapSize32
ThreadID:29 Block:0 warp:0 eachBT:29 wrapSize32
ThreadID:30 Block:0 warp:0 eachBT:30 wrapSize32
ThreadID:31 Block:0 warp:0 eachBT:31 wrapSize32
ThreadID:32 Block:0 warp:1 eachBT:32 wrapSize32
ThreadID:33 Block:0 warp:1 eachBT:33 wrapSize32
ThreadID:34 Block:0 warp:1 eachBT:34 wrapSize32
ThreadID:35 Block:0 warp:1 eachBT:35 wrapSize32
ThreadID:36 Block:0 warp:1 eachBT:36 wrapSize32
ThreadID:37 Block:0 warp:1 eachBT:37 wrapSize32
ThreadID:38 Block:0 warp:1 eachBT:38 wrapSize32
ThreadID:39 Block:0 warp:1 eachBT:39 wrapSize32
ThreadID:40 Block:0 warp:1 eachBT:40 wrapSize32
ThreadID:41 Block:0 warp:1 eachBT:41 wrapSize32........................................

................................................

疑问:现在还没想通:

当test_ThreadNums_BlockNums_WarpNums<<<2,64>>>里参数修改成《2,128》时,输出结果不理解。

 

 

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include<iostream>
using namespace std;


__global__ void addKernelArray(int*c,int* a,int*b)
{
	int i = threadIdx.x;
	c[i] = a[i]+b[i];
}

//calculate NO. 
__global__ void test_ThreadNums_BlockNums_WarpNums(int* threadNum,int *blockNums,int *WarpNums,int *threadIndex,int *gpu_warpSize)
{
	int i = threadIdx.x + (blockIdx.x*blockDim.x);//thread ID
	threadNum[i] = threadIdx.x;//each block's thread NO.
	blockNums[i] = blockIdx.x;
	WarpNums[i]  = threadIdx.x/warpSize;  
	threadIndex[i] = i;//thread ID
	gpu_warpSize[i] = warpSize;
}

int main()
{
	//BEGIN calculate two arrays add
	const int arraySize = 5;
	int a[arraySize] = {1,2,3,4,5};
	int b[arraySize] = {1,1,1,1,1};
	int c[arraySize] = {0};

	int  *dev_a=0;
	int  *dev_b=0;
	int  *dev_c=0;

	//allocate gpu buffer
	cudaMalloc((void**)&dev_a,arraySize*sizeof(int));
	cudaMalloc((void**)&dev_b,arraySize*sizeof(int));
	cudaMalloc((void**)&dev_c,arraySize*sizeof(int));

	//copy host memory to gpu buffer
	cudaMemcpy(dev_a,a,arraySize*sizeof(int),cudaMemcpyHostToDevice);
	cudaMemcpy(dev_b,b,arraySize*sizeof(int),cudaMemcpyHostToDevice);
	cudaMemcpy(dev_c,c,arraySize*sizeof(int),cudaMemcpyHostToDevice);

	addKernelArray<<<1,arraySize>>>(dev_c,dev_b,dev_a);

	//copy gpu buffer to host memory
	cudaMemcpy(c,dev_c,arraySize*sizeof(int),cudaMemcpyDeviceToHost);

	for(int i=0;i<arraySize;i++)
	{
		std::cout<<c[i]<<" ";
	}
		std::cout<<std::endl;
	//END calculate two arrays add

	//BEGIN  capture thread,block,warp num
	const int cudaBlockNums =2;
	const int cudaAllThreadNums =128;


	int cpu_ThreadId[cudaAllThreadNums] = {0};
	int cpu_BlockNums[cudaAllThreadNums] = {0};
	int cpu_WarpNums[cudaAllThreadNums]={0};
	int cpu_eachBlockThreadNum[cudaAllThreadNums] = {0};
	int cpu_warpSize[cudaAllThreadNums] = {0};

	int *gpu_threadId=0;
	int *gpu_block=0;
	int *gpu_warp=0;
	int *gpu_eachBlockThreadNums=0;
	int *gpu_warpSize=0;
	//申请gpu buffer
	cudaMalloc((void**)&gpu_threadId,cudaAllThreadNums*sizeof(int));
	cudaMalloc((void**)&gpu_block,cudaAllThreadNums*sizeof(int));
	cudaMalloc((void**)&gpu_warp,cudaAllThreadNums*sizeof(int));
	cudaMalloc((void**)&gpu_eachBlockThreadNums,cudaAllThreadNums*sizeof(int));
	cudaMalloc((void**)&gpu_warpSize,cudaAllThreadNums*sizeof(int));
	//记录数据
	test_ThreadNums_BlockNums_WarpNums<<<2,64>>>(gpu_eachBlockThreadNums,gpu_block,gpu_warp,gpu_threadId,gpu_warpSize);

	//拷贝到cpu里
	cudaMemcpy(cpu_ThreadId,gpu_threadId,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
	cudaMemcpy(cpu_BlockNums,gpu_block,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
	cudaMemcpy(cpu_WarpNums,gpu_warp,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
	cudaMemcpy(cpu_eachBlockThreadNum,gpu_eachBlockThreadNums,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
	cudaMemcpy(cpu_warpSize,gpu_warpSize,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
	for(int i=0;i<cudaAllThreadNums;i++)
	{
		std::cout<<"ThreadID:"<<cpu_ThreadId[i]<<" Block:"<<cpu_BlockNums[i]<<" warp:"<<cpu_WarpNums[i]<<" eachBT:"<<cpu_eachBlockThreadNum[i]<<"      wrapSize"<<cpu_warpSize[i]<<endl;
	}

	//END  capture thread,block,warp num

	return 0;
}

  

 

 

 

转载于:https://www.cnblogs.com/dust-fly/p/3778839.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值