手写数字识别———Softmax回归

参考教程:http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

安装要求:

Spyder(Python3.5)

Anaconda

下载MNIST数据集

在网上下载数据集,放在"MNIST_data"文件下

from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
print("Download Done!") 

回归模型

权重衰减

我们通过添加一个权重衰减项 \textstyle \frac{\lambda}{2} \sum_{i=1}^k \sum_{j=0}^{n} \theta_{ij}^2 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

\begin{align} J(\theta) = - \frac{1}{m} \left[ \sum_{i=1}^{m} \sum_{j=1}^{k} 1\left\{y^{(i)} = j\right\} \log \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)} }}  \right]               + \frac{\lambda}{2} \sum_{i=1}^k \sum_{j=0}^n \theta_{ij}^2 \end{align}


有了这个权重衰减项以后 (\textstyle \lambda > 0),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为\textstyle J(\theta)是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。


为了使用优化算法,我们需要求得这个新函数 \textstyle J(\theta) 的导数,如下:

\begin{align} \nabla_{\theta_j} J(\theta) = - \frac{1}{m} \sum_{i=1}^{m}{ \left[ x^{(i)} ( 1\{ y^{(i)} = j\}  - p(y^{(i)} = j | x^{(i)}; \theta) ) \right]  } + \lambda \theta_j \end{align}


通过最小化 \textstyle J(\theta),我们就能实现一个可用的 softmax 回归模型。

 

Softmax回归与Logistic 回归的关系

当类别数 \textstyle k = 2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 \textstyle k = 2 时,softmax 回归的假设函数为:

\begin{align} h_\theta(x) &=  \frac{1}{ e^{\theta_1^Tx}  + e^{ \theta_2^T x^{(i)} } } \begin{bmatrix} e^{ \theta_1^T x } \\ e^{ \theta_2^T x } \end{bmatrix} \end{align}


利用softmax回归参数冗余的特点,我们令 \textstyle \psi = \theta_1,并且从两个参数向量中都减去向量 \textstyle \theta_1,得到:

\begin{align} h(x) &=  \frac{1}{ e^{\vec{0}^Tx}  + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \begin{bmatrix} e^{ \vec{0}^T x } \\ e^{ (\theta_2-\theta_1)^T x } \end{bmatrix} \\   &= \begin{bmatrix} \frac{1}{ 1 + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\ \frac{e^{ (\theta_2-\theta_1)^T x }}{ 1 + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \end{bmatrix} \\  &= \begin{bmatrix} \frac{1}{ 1  + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\ 1 - \frac{1}{ 1  + e^{ (\theta_2-\theta_1)^T x^{(i)} } } \\ \end{bmatrix} \end{align}


因此,用 \textstyle \theta'来表示\textstyle \theta_2-\theta_1,我们就会发现 softmax 回归器预测其中一个类别的概率为 \textstyle \frac{1}{ 1  + e^{ (\theta')^T x^{(i)} } },另一个类别概率的为 \textstyle 1 - \frac{1}{ 1 + e^{ (\theta')^T x^{(i)} } },这与 logistic回归是一致的。

Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量 \textstyle \theta_j 中减去了向量 \textstyle \psi,这时,每一个 \textstyle \theta_j 都变成了 \textstyle \theta_j - \psi(\textstyle j=1, \ldots, k)。此时假设函数变成了以下的式子:

\begin{align} p(y^{(i)} = j | x^{(i)} ; \theta) &= \frac{e^{(\theta_j-\psi)^T x^{(i)}}}{\sum_{l=1}^k e^{ (\theta_l-\psi)^T x^{(i)}}}  \\ &= \frac{e^{\theta_j^T x^{(i)}} e^{-\psi^Tx^{(i)}}}{\sum_{l=1}^k e^{\theta_l^T x^{(i)}} e^{-\psi^Tx^{(i)}}} \\ &= \frac{e^{\theta_j^T x^{(i)}}}{\sum_{l=1}^k e^{ \theta_l^T x^{(i)}}}. \end{align}


换句话说,从 \textstyle \theta_j 中减去 \textstyle \psi 完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 \textstyle h_\theta


进一步而言,如果参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_k) 是代价函数 \textstyle J(\theta) 的极小值点,那么 \textstyle (\theta_1 - \psi, \theta_2 - \psi,\ldots, \theta_k - \psi) 同样也是它的极小值点,其中 \textstyle \psi 可以为任意向量。因此使 \textstyle J(\theta) 最小化的解不是唯一的。(有趣的是,由于 \textstyle J(\theta) 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)


注意,当 \textstyle \psi = \theta_1 时,我们总是可以将 \textstyle \theta_1替换为\textstyle \theta_1 - \psi = \vec{0}(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 \textstyle \theta_1 (或者其他 \textstyle \theta_j 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 \textstyle k\times(n+1) 个参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_k) (其中 \textstyle \theta_j \in \Re^{n+1}),我们可以令 \textstyle \theta_1 = \vec{0},只优化剩余的 \textstyle (k-1)\times(n+1) 个参数,这样算法依然能够正常工作。


在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 \textstyle (\theta_1, \theta_2,\ldots, \theta_n),而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

Softmax 回归 vs. k 个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

代码实现

# -*- coding: utf-8 -*-
"""
Created on Wed Nov 29 19:40:50 2017

@author: 702
"""
#softmax 数字识别
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
print("Download Done!")

x = tf.placeholder(tf.float32, [None, 784])#784输入图片维度

# paras
W = tf.Variable(tf.zeros([784, 10]))       #权重 
b = tf.Variable(tf.zeros([10]))            #偏置

y = tf.nn.softmax(tf.matmul(x, W) + b)    #回归模型计算每个分类概率值
y_ = tf.placeholder(tf.float32, [None, 10])

# loss func
#损失函数-目标类别和预测类别之间的交叉熵
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)

# init
init = tf.initialize_all_variables()

sess = tf.Session()
sess.run(init)

# train
for i in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

  希望再学习下tensorflow中有tensorboard工具,进行网络可视化。

 

 

 

 

转载于:https://www.cnblogs.com/zengshangzhi/p/7922653.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 手写数字识别是一个常见的计算机视觉问题,而使用softmax分类器可以有效地解决这个问题。 首先,我们需要明白softmax是一个常用的分类算法,适用于处理多分类问题。它可以将一组任意数字转换为概率分布,用于表示每个类别的可能性。 在手写数字识别中,我们可以将每个手写数字样本表示为一个向量,并将其输入到softmax分类器中进行训练和预测。分类器的输入是一个待分类的样本向量,而输出是一个概率分布向量,代表每个数字类别的可能性。 训练阶段,我们使用已经标注了正确类别的手写数字样本来训练分类器的参数。通常使用梯度下降等优化算法,根据样本的特征和真实标签来不断调整分类器的参数,以使得分类器能够更准确地区分不同的数字。 在预测阶段,我们使用训练好的分类器来对待分类的手写数字进行预测。输入待分类的样本向量,分类器会对每个类别都进行评估,通过softmax函数将评估结果转换为概率分布。最终,我们选择具有最高概率的类别作为预测结果。 softmax函数的数学表达式如下: softmax(x_i) = exp(x_i) / sum(exp(x_j)) 其中,x_i表示第i个类别的评估结果,exp(x_i)表示x_i的指数形式,sum(exp(x_j))表示所有类别评估结果的指数和。 综上所述,手写数字识别使用softmax分类器是一种有效的方法。它可以将手写数字样本转换为概率分布向量,用于表示每个数字类别的可能性,并且可以通过训练和预测阶段来实现准确的数字识别。 ### 回答2: 手写数字识别是指将手写数字图像识别为具体的数字,而softmax函数是在机器学习中常用的一种分类函数。手写数字识别使用softmax的原因是它能将输入的数据映射到0到1之间的概率值,从而方便对不同类别进行分类。 softmax函数将每个输入值转化为概率值,用于表示它属于每个可能类别的概率。在手写数字识别中,我们可以使用softmax来计算每个数字类别的概率分布。对于图像识别任务而言,输入是一个手写数字图像,我们通过对图像进行特征提取和处理,得到一个向量作为输入给softmax函数。 在手写数字识别任务中,我们使用一个包含多层神经网络模型,其中最后一层连接到softmax函数。该模型的前几层负责从图像中提取特征,最后一层则将这些特征用于分类。 在训练过程中,我们通过向模型提供已标注的手写数字图像和相应的数字类别来进行监督学习。模型会根据训练数据中的特征和标签之间的关系进行调整,以使得模型能够更好地对未标注图像进行预测。 使用softmax函数后,模型会根据输入的特征向量计算每个类别的概率值。概率最高的类别即被认为是模型对输入图像的分类结果。通过训练数据中的标签信息,模型调整其内部参数以最大化预测结果的准确性。 总之,手写数字识别使用softmax函数可以将手写数字图像的特征映射到概率上,方便进行分类。 ### 回答3: 手写数字识别是计算机视觉领域中的一项重要任务。为了解决这个问题,可以使用深度学习中的softmax函数。 softmax函数是一个常用的分类函数,通常用于将多个不同类别的概率分布转化为对应类别的概率值。在手写数字识别中,我们可以将每个手写数字的图像输入到神经网络中,并使用softmax函数来预测图像属于不同数字的概率。 假设我们有一张手写数字的图像,将其输入到一个具有多个神经元的输出层,每个神经元对应一个可能的数字类别。这些神经元的输出经过softmax函数处理后,会将其转化为一个表示概率的值。 具体来说,softmax函数会对输入的向量进行指数运算,然后将每个元素的指数值除以所有元素的指数值之和。这样可以保证输出的概率值总和为1,且每个概率值表示该输入属于某个类别的概率。 手写数字识别中,softmax函数可以将每个手写数字的图像所属的类别进行概率化,然后可以选择概率最高的类别作为预测结果。通过多次训练和调整,神经网络可以学习到不同数字的特征,并通过softmax函数对输入图像的特征进行分类和预测。 总之,手写数字识别使用softmax函数可以将神经网络的输出转化为对不同数字类别的概率,从而实现对手写数字图像的准确识别。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值