Stolz定理及其证明

Stolz定理及其证明

Stolz定理是一种用于求分数形式数列极限的方法,要求是分母为(从某项起)严格增加的无穷大量,定理形式如下:

{ y n } \{y_n\} {yn}是严格单调增加的正无穷大量,且
lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = a , ( − ∞ ≤ a ≤ ∞ ) \lim_{n\to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=a,\quad(-\infty \le a\le \infty) nlimynyn1xnxn1=a,(a)
则有
lim ⁡ n → ∞ x n y n = a . \lim_{n\to \infty}\frac{x_n}{y_n}=a. nlimynxn=a.


证明:先证明 a = 0 a=0 a=0的情况。由于
lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = 0 \lim_{n\to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=0 nlimynyn1xnxn1=0
所以 ∀ ε , ∃ N \forall \varepsilon,\exists N ε,N,使得 ∀ n > N \forall n>N n>N,有 ∣ x n − x n − 1 ∣ < ε ∣ y n − y n − 1 ∣ = ε ( y n − y n − 1 ) |x_n-x_{n-1}|<\varepsilon|y_n-y_{n-1}|=\varepsilon(y_n-y_{n-1}) xnxn1<εynyn1=ε(ynyn1)。可以写出如下一些式子:
∣ x n − x n − 1 ∣ < ε ( y n − y n − 1 ) , ∣ x n − 1 − x n − 2 ∣ < ε ( y n − 1 − y n − 2 ) , ⋮ ∣ x N + 2 − x N + 1 ∣ < ε ( y N + 2 − y N + 1 ) , ∣ x N + 1 − x N ∣ < ε ( y N + 1 − y N ) . \begin{aligned} |x_n-x_{n-1}|<&\varepsilon(y_n-y_{n-1}),\\ |x_{n-1}-x_{n-2}|<&\varepsilon(y_{n-1}-y_{n-2}),\\ \vdots\\ |x_{N+2}-x_{N+1}|<&\varepsilon (y_{N+2}-y_{N+1}),\\ |x_{N+1}-x_{N}|<&\varepsilon (y_{N+1}-y_N). \end{aligned} xnxn1<xn1xn2<xN+2xN+1<xN+1xN<ε(ynyn1),ε(yn1yn2),ε(yN+2yN+1),ε(yN+1yN).
由于 ∣ x n − x N ∣ = ∣ ( x n − x n − 1 ) + ( x n − 1 − x n − 2 ) + ⋯ + ( x N + 1 − x N ) ∣ |x_n-x_{N}|=|(x_n-x_{n-1})+(x_{n-1}-x_{n-2})+\cdots+(x_{N+1}-x_N)| xnxN=(xnxn1)+(xn1xn2)++(xN+1xN),所以
∣ x n − x N ∣ = ∣ ( x n − x n − 1 ) + ( x n − 1 − x n − 2 ) + ⋯ + ( x N + 1 − x N ) ∣ ≤ ∣ x n − x n − 1 ∣ + ∣ x n − 1 − x n − 2 ∣ + ⋯ + ∣ x N + 1 − x N ∣ < ε [ ( y n − y n − 1 ) + ( y n − 1 − y n − 2 ) + ⋯ + ( y N + 1 − y N ) ] = ε ( y n − y N ) . \begin{aligned} |x_n-x_N|=&|(x_n-x_{n-1})+(x_{n-1}-x_{n-2})+\cdots+(x_{N+1}-x_N)|\\ \le&|x_n-x_{n-1}|+|x_{n-1}-x_{n-2}|+\cdots+|x_{N+1}-x_N|\\ <&\varepsilon[(y_n-y_{n-1})+(y_{n-1}-y_{n-2})+\cdots+(y_{N+1}-y_N)]\\ =&\varepsilon(y_n-y_N). \end{aligned} xnxN=<=(xnxn1)+(xn1xn2)++(xN+1xN)xnxn1+xn1xn2++xN+1xNε[(ynyn1)+(yn1yn2)++(yN+1yN)]ε(ynyN).
不等式两边同时除去 y n > 0 y_n>0 yn>0,得到
∣ x n y n − x N y n ∣ < ε ( 1 − y N y n ) < ε . \left|\frac{x_n}{y_n}-\frac{x_N}{y_n}\right|<\varepsilon\left(1-\frac{y_N}{y_n}\right)<\varepsilon. ynxnynxN<ε(1ynyN)<ε.
由于 x N , y N x_N,y_N xN,yN都是常数,所以存在一个 N ′ N' N,当 n > N ′ n>N' n>N时有 x N / y n < ε x_N/y_n<\varepsilon xN/yn<ε,所以
∣ x n y n ∣ < 2 ε , lim ⁡ n → ∞ x n y n = 0. \left|\frac{x_n}{y_n}\right|<2\varepsilon,\quad \lim_{n\to \infty}\frac{x_n}{y_n}=0. ynxn<2ε,nlimynxn=0.
这里证明了 a = 0 a=0 a=0的情况,如果 a ≠ 0 a\ne 0 a=0但为有限数,则令
x n ′ = x n − a y n , x_n'=x_n-ay_n, xn=xnayn,

lim ⁡ n → ∞ x n ′ − x n − 1 ′ y n − y n − 1 = lim ⁡ n → ∞ x n − x n − 1 − a ( y n − y n − 1 ) y n − y n − 1 = lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 − a = 0. \lim_{n\to \infty}\frac{x_n'-x_{n-1}'}{y_n-y_{n-1}}=\lim_{n\to \infty}\frac{x_n-x_{n-1}-a(y_{n}-y_{n-1})}{y_{n}-y_{n-1}}=\lim_{n\to \infty}\frac{x_n -x_{n-1}}{y_n-y_{n-1}}-a=0. nlimynyn1xnxn1=nlimynyn1xnxn1a(ynyn1)=nlimynyn1xnxn1a=0.
所以由 a = 0 a=0 a=0的情况直接推得
lim ⁡ n → ∞ x n ′ y n = lim ⁡ n → ∞ x n − a y n y n = lim ⁡ n → ∞ x n y n − a = 0 , lim ⁡ n → ∞ x n y n = a . \lim_{n\to \infty}\frac{x_n'}{y_n}=\lim_{n\to \infty}\frac{x_n-ay_n}{y_n}=\lim_{n\to \infty}\frac{x_n}{y_n}-a=0,\quad \lim_{n\to \infty}\frac{x_n}{y_n}=a. nlimynxn=nlimynxnayn=nlimynxna=0,nlimynxn=a.
对于 a = + ∞ a=+\infty a=+,即
lim ⁡ n → ∞ x n − x n − 1 y n − y n − 1 = + ∞ , \lim_{n\to \infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}}=+\infty, nlimynyn1xnxn1=+,
那么存在一个 N N N,使得 ∀ G > 0 , ∀ n > N \forall G>0,\forall n>N G>0,n>N,有
x n − x n − 1 y n − y n − 1 > G , \frac{x_n-x_{n-1}}{y_{n}-y_{n-1}}>G, ynyn1xnxn1>G,
G = 1 G=1 G=1,至少有
x n − x n − 1 > y n − y n − 1 . x_n-x_{n-1}>y_n-y_{n-1}. xnxn1>ynyn1.
这说明 x n x_n xn是严格增加的,并且类似地有
x n − x n − 1 > y n − y n − 1 , x n − 1 − x n − 2 > y n − 1 − y n − 2 , ⋮ x N + 1 − x N > y N + 1 − y N . \begin{aligned} x_n-x_{n-1}>&y_n-y_{n-1},\\ x_{n-1}-x_{n-2}>&y_{n-1}-y_{n-2},\\ \vdots\\ x_{N+1}-x_N>&y_{N+1}-y_N. \end{aligned} xnxn1>xn1xn2>xN+1xN>ynyn1,yn1yn2,yN+1yN.
累加就得到 x n − x N > y n − y N x_n-x_N>y_n-y_N xnxN>ynyN,令 x N − y N = C x_N-y_N=C xNyN=C,则 x n > y n − C x_n>y_n-C xn>ynC,由于 y n y_n yn是无穷大量, C C C是常数,所以 x n x_n xn也是无穷大量。当 a = − ∞ a=-\infty a=时一样可以类似证明。

  • 28
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值