一个arctan积分的两种解法

\[\Large\int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x\]


\(\Large\mathbf{Solution:}\)
首先第一种做法,含参积分.不多说直接上图
944004-20160427124533080-976661771.jpg


第二种方法则是利用级数,易知
\[\begin{align*} \int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\mathrm{d}x&=\int_0^{\pi/2}\arctan(\sin(x))\,\mathrm{d}x\\&=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\int_0^{\pi/2}\sin^{2k+1}(x)\,\mathrm{d}x\\ &=\sum_{k=0}^\infty\frac{(-1)^k}{2k+1}\frac{2^k\,k!}{(2k+1)!!}\\ &=\sum_{k=0}^\infty\frac{(-1)^k}{(2k+1)^2}\frac{4^k}{\displaystyle\binom{2k}{k}} \end{align*}\]
下面来解决最后一个级数,利用Beta函数我们可以得到以下等式
\[\frac1{\displaystyle\binom{2n}{n}}=(2n+1)\int_0^1t^n(1-t)^n\mathrm{d}t\]
所以
\[\begin{align*} \sum_{n=0}^\infty\frac{(-4)^nx^{2n}}{(2n+1)\displaystyle\binom{2n}{n}} &=\int_0^1\frac1{1+4x^2t(1-t)}\mathrm{d}t\\ &=\int_0^1\frac1{1+x^2-x^2(2t-1)^2}\mathrm{d}t\\ &=\frac1{1+x^2}\int_0^1\frac1{1-\dfrac{x^2}{1+x^2}(2t-1)^2}\mathrm{d}t\\ &=\frac1{1+x^2}\int_{-1}^1\frac1{1-\dfrac{x^2}{1+x^2}t^2}\frac12\mathrm{d}t\\ &=\frac1{2x\sqrt{1+x^2}}\int_{-x/\sqrt{1+x^2}}^{x/\sqrt{1+x^2}}\frac1{1-t^2}\mathrm{d}t\\ &=\frac1{x\sqrt{1+x^2}}\mathrm{arctanh}\left(\frac{x}{\sqrt{1+x^2}}\right)\\ &=\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x) \end{align*}\]
两边积分可以得到
\[\begin{align*} \sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}} &=\int_0^1\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\ &=-\int_0^1\mathrm{arcsinh}(x)\frac1{\sqrt{\vphantom{\big|}1+1/x^2}}\mathrm{d}\frac1x\\ &=-\int_0^1\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\ &=-\,\mathrm{arcsinh}^2(1)+\int_0^1\mathrm{arcsinh}\left(\frac1x\right)\,\mathrm{d}\,\mathrm{arcsinh}(x)\\ &=-\,\mathrm{arcsinh}^2(1)-\int_1^\infty\mathrm{arcsinh}(x)\,\mathrm{d}\,\mathrm{arcsinh}\left(\frac1x\right)\\ &=-\,\mathrm{arcsinh}^2(1)+\int_1^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\ &=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac1{x\sqrt{1+x^2}}\mathrm{arcsinh}(x)\,\mathrm{d}x\\ &=-\frac12\,\mathrm{arcsinh}^2(1)+\frac12\int_0^\infty\frac{t\,\mathrm{d}t}{\sinh(t)} \end{align*}\]
其中
\[\int_0^\infty\frac{t\,\mathrm{dt}}{\sinh(t)}=\int_0^\infty\sum_{k=0}^\infty2t\,e^{-(2k+1)t}\,\mathrm{d}t=\sum_{k=0}^\infty\frac2{(2k+1)^2}=\frac{\pi^2}4\]
所以
\[\color{red}{\sum_{n=0}^\infty\frac{(-4)^n}{(2n+1)^2\displaystyle \binom{2n}{n}}=\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}\]

\[\Large\boxed{\displaystyle \int_{0}^{1}\frac{\arctan x}{\sqrt{1-x^{2}}}\, \mathrm{d}x=\color{blue}{\frac{\pi^2}8-\frac12\mathrm{arcsinh}^2(1)}}\]

转载于:https://www.cnblogs.com/Renascence-5/p/5438434.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
该资源内项目源码是个人的课程设计、毕业设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 该资源内项目源码是个人的课程设计,代码都测试ok,都是运行成功后才上传资源,答辩评审平均分达到96分,放心下载使用! ## 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值