有理函数积分的一般解法

在各类积分运算中,我们常见到这样一类函数,它们有貌离神合的计算方法——有理函数。

例如
∫ 1 x d x = ln ⁡ ∣ x ∣ + C ,    x ≠ 0 \int \frac{1}{x}\mathrm{d}x=\ln|x|+C, \ \ x \ne 0 x1dx=lnx+C,  x=0
又如
∫ x n d x = x n + 1 n + 1 + C ,    n ≠ − 1 \int x^n\mathrm{d}x=\frac{x^{n+1}}{n+1}+C, \ \ n\ne -1 xndx=n+1xn+1+C,  n=1
再如
∫ 1 1 + x 2 d x = arctan ⁡ x + C \int \frac{1}{1+x^2}\mathrm{d}x=\arctan x+C 1+x21dx=arctanx+C
上述三例倒也不是随意举出来的,利用上述三个最简积分公式加上一些技巧,我们可以计算出任一有理函数的(不定)积分,下面我们就来介绍具体的范式。

一些定积分的技巧我们在这里不做讨论,下面所言积分都是不定积分

有理函数

首先,我们明确一下何谓有理函数,形如:
f ( x ) = P m ( x ) Q n ( x ) f(x)=\frac{P_m(x)}{Q_n(x)} f(x)=Qn(x)Pm(x)
其中
P m ( x ) = ∑ i = 0 m a i x i , Q n ( x ) = ∑ j = 0 n b j x j , Q n ( x ) ≠ 0 P_m(x)=\sum_{i=0}^ma_ix^i,Q_n(x)=\sum_{j=0}^nb_jx^j,Q_n(x)\ne0 Pm(x)=i=0maixi,Qn(x)=j=0nbjxj,Qn(x)=0
也就是两个多项式的商称为有理函数,这个概念显然是有理数某种意义上的推广:
Q = { f = p q ∣ p , q ∈ Z , q ≠ 0 } \mathbb{Q}=\left\{f=\frac{p}{q}\mid p,q\in \mathbb{Z}, q\ne 0\right\} Q={f=qpp,qZ,q=0}
并且类似的,我们也定义真分式:
proper fraction = { f ( x ) = P m ( x ) Q n ( x ) ∣ m < n } \text{proper fraction}=\left\{f(x)=\frac{P_m(x)}{Q_n(x)}\mid m<n\right\} proper fraction={f(x)=Qn(x)Pm(x)m<n}
和假分式:
improper fraction = { f ( x ) = P m ( x ) Q n ( x ) ∣ m ≥ n } \text{improper fraction}=\left\{f(x)=\frac{P_m(x)}{Q_n(x)}\mid m\ge n\right\} improper fraction={f(x)=Qn(x)Pm(x)mn}

上面写成了集合形式,有些显而易见的条件就略去了,并且在我们讨论有理函数积分的场景下,不妨假设 P m P_m Pm Q n Q_n Qn最高次项的系数都为1

分解技术

从上面的定义看得出来,有理函数和多项式的关系非常密切,实际上为了求解一般有理函数的积分我们需要下面两个分解:

因式分解

因式分解是对于一个多项式而言的,根据代数基本定理, Q n ( x ) Q_n(x) Qn(x)复数域内有如下分解形式:
Q n ( x ) = ∏ i = 1 n ( x − x i ) Q_n(x)=\prod_{i=1}^n(x-x_i) Qn(x)=i=1n(xxi)
其中 x i ∈ C x_i\in \mathbb{C} xiC Q n ( x ) = 0 Q_n(x)=0 Qn(x)=0的根。
更进一步,我们有:
Q n ( x ) = ∏ i = 1 n 1 ( x − x i ) ∏ j = 1 ( n − n 1 ) / 2 ( x − x j ) ( x − x j ‾ ) Q_n(x)=\prod_{i=1}^{n_1}(x-x_i)\prod_{j=1}^{(n-n_1)/2}(x-x_j)(x-\overline{x_j}) Qn(x)=i=1n1(xxi)j=1(nn1)/2(xxj)(xxj)
其中 x j ‾ \overline{x_j} xj代表复数 x j , j = 1 , ⋯   , n − n 1 2 x_j,j=1,\cdots,\frac{n-n_1}{2} xj,j=1,,2nn1的共轭, x i , i = 1 , ⋯   , n 1 x_i,i=1,\cdots,n_1 xi,i=1,,n1都是实数。

能做出第二个形式是因为,实系数多项式的零点若不是实数,那么它的共轭必然也是零点,也就是说非实数零点是成对出现的

这是显然成立的, Q ( x ) = 0 Q(x)=0 Q(x)=0两边取共轭有, Q ( x ) ‾ = 0 \overline{Q(x)}=0 Q(x)=0,根据复数的性质(加、减、乘运算和共轭运算可交换),所以有 Q ( x ‾ ) = 0 Q(\overline{x})=0 Q(x)=0,这样就说明了非实数零点成对出现。

如果取 x j = α j + β j i x_j=\alpha_j + \beta_j \mathrm{i} xj=αj+βji 其中 α j , β j ∈ R \alpha_j,\beta_j \in \mathbb{R} αj,βjR,那么很容易得到下面的分解形式:
Q n ( x ) = ∏ i = 1 n 1 ( x − x i ) ∏ j = 1 ( n − n 1 ) / 2 ( x 2 − 2 α j x + α j 2 + β j 2 ) Q_n(x)=\prod_{i=1}^{n_1}(x-x_i)\prod_{j=1}^{(n-n_1)/2}(x^2-2\alpha_j x+\alpha_j^2+\beta_j^2) Qn(x)=i=1n1(xxi)j=1(nn1)/2(x22αjx+αj2+βj2)
这也就是 Q n ( x ) Q_n(x) Qn(x)实数域内的因式分解。

如果我们把重根合并在一起,就有
f ( x ) = ∏ i = 1 s ( x − a i ) d i ∏ j = 1 t ( x 2 − 2 α j x + α j 2 + β j 2 ) e j f(x)=\prod_{i=1}^{s}(x-a_i)^{d_i}\prod_{j=1}^{t}(x^2-2\alpha_j x+\alpha_j^2+\beta_j^2)^{e_j} f(x)=i=1s(xai)dij=1t(x22αjx+αj2+βj2)ej
其中 d i d_i di为实根 a i a_i ai的重数, e j e_j ej为共轭复根对 α j + β j i \alpha_j + \beta_j \mathrm{i} αj+βji的重数。

部分分式分解

有了上述 Q n ( x ) Q_n(x) Qn(x)的实数域内的分解形式,我们就可以得到下面有理真分式的部分分式分解形式:
P ( x ) Q ( x ) = ∑ i = 1 s ∑ k = 1 d i A i k ( x − a i ) k + ∑ j = 1 t ∑ k = 1 e j B j k x + C j k ( x 2 − 2 α j x + α j 2 + β j 2 ) k \begin{aligned} &\frac{P(x)}{Q(x)}\\ =&\sum_{i=1}^{s}\sum_{k=1}^{d_i}\frac{A_{ik}}{(x-a_i)^k}+\sum_{j=1}^{t}\sum_{k=1}^{e_j}\frac{B_{jk}x+C_{jk}}{(x^2-2\alpha_j x+\alpha_j^2+\beta_j^2)^k}\\ \end{aligned} =Q(x)P(x)i=1sk=1di(xai)kAik+j=1tk=1ej(x22αjx+αj2+βj2)kBjkx+Cjk
其中 A i , B j , C j ∈ R A_i,B_j,C_j \in \mathbb{R} Ai,Bj,CjR

可以证明,上述待定系数一定有解。

我见过两种证明方法,一种是使用多项式的理论,详见

傅莺莺.有理真分式部分分式分解的证明及系数公式[J].大学数学,2014,30(02):82-87.

另外一种是使用线性空间的理论,详见

高翔宇,杨洪福,王世鹏.有理分式函数分解定理的新证明[J].大学教育,2020(12):103-104+154.

我们这里不多赘述,下面直接利用部分分式分解的形式来计算有理函数的积分。

积分范式

我们用一个例题来呈现有理函数积分的一般过程。

例一

F ( x ) = ∫ x 4 x 3 + 1 d x F(x)=\int \frac{x^4}{x^3+1}\mathrm{d}x F(x)=x3+1x4dx

分离整式

如果 f ( x ) f(x) f(x)是一个有理假分式, 我们使用带余除法可以把 f ( x ) f(x) f(x)分解为一个整式和有理分式, 积分也就分为两块, 整式部分的积分非常简单, 真分式的部分进入下一流程. 另外, 如果分母不是首一多项式, 直接把系数提出来即可.

例1 步骤1, 分离整式:
F ( x ) = ∫ x 4 x 3 + 1 d x = ∫ [ x − x x 3 + 1 ] d x = 1 2 x 2 − ∫ x x 3 + 1 d x \begin{aligned} &F(x)\\ =&\int \frac{x^4}{x^3+1}\mathrm{d}x\\ =&\int \left[x-\frac{x}{x^3+1}\right]\mathrm{d}x\\ =&\frac{1}{2}x^2-\int \frac{x}{x^3+1}\mathrm{d}x \end{aligned} ===F(x)x3+1x4dx[xx3+1x]dx21x2x3+1xdx

部分分式分解

前文提到任何一个有理真分式都可以做部分分式分解, 其中待定系数的求法较为灵活. 主要包括三种, 其一是极限法: 对分解式取不同极限可以得到系数的值, 其二是列出待定系数的线性方程组求解(通用), 其三是利用导数求解.

例1 步骤2, 有理真分式的部分分解
x 3 + 1 = ( x + 1 ) ( x 2 − x + 1 ) x^3+1 = (x+1)(x^2-x+1) x3+1=(x+1)(x2x+1)
于是有部分分解
x x 3 + 1 = x ( x + 1 ) ( x 2 − x + 1 ) = A x + 1 + B x + C x 2 − x + 1 \begin{aligned} &\frac{x}{x^3+1}\\ =&\frac{x}{(x+1)(x^2-x+1)}\\ =&\frac{A}{x+1}+\frac{Bx+C}{x^2-x+1} \end{aligned} ==x3+1x(x+1)(x2x+1)xx+1A+x2x+1Bx+C
通分得到
x = A ( x 2 − x + 1 ) + ( B x + C ) ( x + 1 ) (*) \begin{aligned} x=A(x^2-x+1)+(Bx+C)(x+1) \tag{*} \end{aligned} x=A(x2x+1)+(Bx+C)(x+1)(*)
下面求待定系数.

法一(极限法)

(*)式取 x → − 1 x\to -1 x1立得 A = − 1 3 A=-\frac{1}{3} A=31;

再取 x → 0 x \to 0 x0立得 C = − A = 1 3 C=-A=\frac{1}{3} C=A=31;

最后取 x → 1 x \to 1 x1可得 B = 1 3 B=\frac{1}{3} B=31.

法二(线性方程组)

比较(*)式中各次项系数即可得到线性方程组:
x 2   ∣   A + B = 0 x 1   ∣   − A + B + C = 1 x 0   ∣   A + C = 0 \begin{aligned} x^2& \ | \ A+B=0\\ x^1& \ | \ -A+B+C=1\\ x^0& \ | \ A+C=0 \end{aligned} x2x1x0  A+B=0  A+B+C=1  A+C=0
解得 − A = B = C = 1 3 -A=B=C=\frac{1}{3} A=B=C=31

法三(导数)

对(*)求0,1,2阶导数可得:
0   ∣   x = A ( x 2 − x + 1 ) + ( B x + C ) ( x + 1 ) 1   ∣   1 = 2 A x − A + B ( x + 1 ) + B x + C 2   ∣   0 = 2 A + B + B \begin{aligned} 0& \ | \ x=A(x^2-x+1)+(Bx+C)(x+1)\\ 1& \ | \ 1=2Ax-A+B(x+1)+Bx+C\\ 2& \ | \ 0=2A+B+B \end{aligned} 012  x=A(x2x+1)+(Bx+C)(x+1)  1=2AxA+B(x+1)+Bx+C  0=2A+B+B
同样比较各次项系数可得方程组, 进而解得 − A = B = C = 1 3 -A=B=C=\frac{1}{3} A=B=C=31.

得到部分分式分解形式
F ( x ) = 1 2 x 2 − ∫ x x 3 + 1 d x = 1 2 x 2 − ∫ [ − 1 3 x + 1 + 1 3 x + 1 3 x 2 − x + 1 ] d x \begin{aligned} &F(x)\\ =&\frac{1}{2}x^2-\int \frac{x}{x^3+1}\mathrm{d}x\\ =&\frac{1}{2}x^2-\int \left[ \frac{-\frac{1}{3}}{x+1}+\frac{\frac{1}{3}x+\frac{1}{3}}{x^2-x+1}\right]\mathrm{d}x \end{aligned} ==F(x)21x2x3+1xdx21x2[x+131+x2x+131x+31]dx

两类积分

做完部分分式分解之后,我们需要处理的只有两种积分

分母为一次项

也就是
∫ A x − a d x = A ln ⁡ ∣ x − a ∣ + C \int \frac{A}{x-a}\mathrm{d}x=A\ln|x-a|+C xaAdx=Alnxa+C

分母为二次项

也就是
∫ B x + C x 2 − 2 α x + β d x = ∫ B ( x − α ) + C + α B ( x − α ) 2 + β − α 2 d ( x − α ) = ∫ B t + C + α B t 2 + β − α 2 d t = ∫ 1 2 B t 2 + β − α 2 d t 2 + ∫ C + α B t 2 + β − α 2 d t = B 2 ln ⁡ ∣ t 2 + β − α 2 ∣ + ∫ C + α B t 2 + β − α 2 d t \begin{aligned} &\int \frac{Bx+C}{x^2-2\alpha x+\beta}\mathrm{d}x\\ =&\int \frac{B(x-\alpha)+C+\alpha B}{(x-\alpha)^2+\beta-\alpha^2}\mathrm{d}(x-\alpha)\\ =&\int \frac{Bt+C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t\\ =&\int \frac{1}{2}\frac{B}{t^2+\beta-\alpha^2}\mathrm{d}t^2+\int \frac{C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t\\ =&\frac{B}{2}\ln|t^2+\beta-\alpha^2|+\int \frac{C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t \end{aligned} ====x22αx+βBx+Cdx(xα)2+βα2B(xα)+C+αBd(xα)t2+βα2Bt+C+αBdt21t2+βα2Bdt2+t2+βα2C+αBdt2Blnt2+βα2+t2+βα2C+αBdt
β − α 2 = 0 \beta-\alpha^2=0 βα2=0
∫ C + α B t 2 + β − α 2 d t = − C + α B t + C \begin{aligned} &\int \frac{C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t\\ =&-\frac{C+\alpha B}{t}+C \end{aligned} =t2+βα2C+αBdttC+αB+C
β − α 2 < 0 \beta-\alpha^2<0 βα2<0
∫ C + α B t 2 + β − α 2 d t = C + α B 2 − β + α 2 ∫ [ 1 t + − β + α 2 − 1 t − − β + α 2 ] d t = C + α B 2 − β + α 2 [ ln ⁡ ∣ t + − β + α 2 ∣ + ln ⁡ ∣ t − − β + α 2 ∣ ] + C \begin{aligned} &\int \frac{C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t\\ =&\frac{C+\alpha B}{2\sqrt{-\beta+\alpha^2}}\int \left[\frac{1}{t+\sqrt{-\beta+\alpha^2}}-\frac{1}{t-\sqrt{-\beta+\alpha^2}}\right]\mathrm{d}t\\ =&\frac{C+\alpha B}{2\sqrt{-\beta+\alpha^2}} \left[\ln|t+\sqrt{-\beta+\alpha^2}|+\ln|t-\sqrt{-\beta+\alpha^2}|\right]+C \end{aligned} ==t2+βα2C+αBdt2β+α2 C+αB[t+β+α2 1tβ+α2 1]dt2β+α2 C+αB[lnt+β+α2 +lntβ+α2 ]+C
β − α 2 > 0 \beta-\alpha^2>0 βα2>0
∫ C + α B t 2 + β − α 2 d t = C + α B β − α 2 arctan ⁡ ( t β − α 2 ) + C \begin{aligned} &\int \frac{C+\alpha B}{t^2+\beta-\alpha^2}\mathrm{d}t\\ =&\frac{C+\alpha B}{\sqrt{\beta-\alpha^2}}\arctan (\frac{t}{\sqrt{\beta-\alpha^2}})+C \end{aligned} =t2+βα2C+αBdtβα2 C+αBarctan(βα2 t)+C
以上三种情况注意回代 t = x − α t=x-\alpha t=xα

利用以上两种积分公式, 我们就可以完全解决部分分解之后的积分问题了.

例1 步骤3, 部分分式分解完之后应用积分公式求解
F ( x ) = 1 2 x 2 − ∫ [ − 1 3 x + 1 + 1 3 x + 1 3 x 2 − x + 1 ] d x = 1 2 x 2 + 1 3 ln ⁡ ∣ x + 1 ∣ − ∫ 1 3 ( x − 0.5 ) + 1 2 ( x − 0.5 ) 2 + 0.75 d ( x − 0.5 ) = 1 2 x 2 + 1 3 ln ⁡ ∣ x + 1 ∣ − ∫ 1 3 t + 1 2 t 2 + 0.75 d t = 1 2 x 2 + 1 3 ln ⁡ ∣ x + 1 ∣ − 1 6 ln ⁡ ∣ ( x − 1 2 ) 2 + 3 4 ∣ + 3 3 arctan ⁡ ( 2 3 3 ( x − 1 2 ) ) + C = 1 6 { 3 x 2 + 2 ln ⁡ ∣ x + 1 ∣ − ln ⁡ ( x 2 − x + 1 ) − 2 3 arctan ⁡ ( 2 x − 1 3 ) } + C \begin{aligned} &F(x)\\ =&\frac{1}{2}x^2-\int \left[ \frac{-\frac{1}{3}}{x+1}+\frac{\frac{1}{3}x+\frac{1}{3}}{x^2-x+1}\right]\mathrm{d}x\\ =&\frac{1}{2}x^2+\frac{1}{3}\ln|x+1|-\int \frac{\frac{1}{3}(x-0.5)+\frac{1}{2}}{(x-0.5)^2+0.75}\mathrm{d}(x-0.5)\\ =&\frac{1}{2}x^2+\frac{1}{3}\ln|x+1|-\int \frac{\frac{1}{3}t+\frac{1}{2}}{t^2+0.75}\mathrm{d}t\\ =&\frac{1}{2}x^2+\frac{1}{3}\ln|x+1|-\frac{1}{6}\ln|(x-\frac{1}{2})^2+\frac{3}{4}|+\frac{\sqrt{3}}{3}\arctan(\frac{2\sqrt{3}}{3}(x-\frac{1}{2}))+C\\ =&\frac{1}{6}\left\{3x^2+2\ln|x+1|-\ln(x^2-x+1)-2\sqrt{3}\arctan(\frac{2x-1}{\sqrt{3}})\right\}+C \end{aligned} =====F(x)21x2[x+131+x2x+131x+31]dx21x2+31lnx+1(x0.5)2+0.7531(x0.5)+21d(x0.5)21x2+31lnx+1t2+0.7531t+21dt21x2+31lnx+161ln(x21)2+43+33 arctan(323 (x21))+C61{3x2+2lnx+1ln(x2x+1)23 arctan(3 2x1)}+C

例题

我们再给出几个例题

例二(分母无重因子)

∫ d x ( x 2 + 1 ) ( x 2 + x ) \int \frac{\mathrm{d}x}{(x^2+1)(x^2+x)} (x2+1)(x2+x)dx
解:
∫ d x ( x 2 + 1 ) ( x 2 + x ) = ∫ [ 1 x − 1 2 ( x + 1 ) − 1 + x 2 ( x 2 + 1 ) ] d x = ln ⁡ ∣ x ∣ − 1 2 ln ⁡ ∣ x + 1 ∣ − 1 2 arctan ⁡ x − 1 4 ∫ d ( x 2 + 1 ) x 2 + 1 = ln ⁡ ∣ x ∣ − 1 2 ln ⁡ ∣ x + 1 ∣ − 1 2 arctan ⁡ x − 1 4 ln ⁡ ( x 2 + 1 ) + C \begin{aligned} &\int \frac{\mathrm{d}x}{(x^2+1)(x^2+x)}\\ &=\int\left[\frac{1}{x}-\frac{1}{2(x+1)}-\frac{1+x}{2\left(x^{2}+1\right)}\right] \mathrm{d} x \\ &=\ln |x|-\frac{1}{2} \ln |x+1|-\frac{1}{2} \arctan x-\frac{1}{4} \int \frac{\mathrm{d}\left(x^{2}+1\right)}{x^{2}+1} \\ &=\ln |x|-\frac{1}{2} \ln |x+1|-\frac{1}{2} \arctan x-\frac{1}{4} \ln \left(x^{2}+1\right)+C \end{aligned} (x2+1)(x2+x)dx=[x12(x+1)12(x2+1)1+x]dx=lnx21lnx+121arctanx41x2+1d(x2+1)=lnx21lnx+121arctanx41ln(x2+1)+C

例三(分母有重因子)

∫ x 2 + 1 ( x + 1 ) 2 ( x − 1 ) d x \int \frac{x^{2}+1}{(x+1)^{2}(x-1)} \mathrm{d} x (x+1)2(x1)x2+1dx
解:
∫ x 2 + 1 ( x + 1 ) 2 ( x − 1 ) d x = ∫ [ 1 2 ( x + 1 ) − 1 ( x + 1 ) 2 + 1 2 ( x − 1 ) d x ] = 1 2 ln ⁡ ∣ x 2 − 1 ∣ + 1 x + 1 + C \begin{aligned} &\int \frac{x^{2}+1}{(x+1)^{2}(x-1)} \mathrm{d} x\\ =&\int\left[\frac{1}{2(x+1)}-\frac{1}{(x+1)^{2}}+\frac{1}{2(x-1)} \mathrm{d}x\right]\\ =&\frac{1}{2} \ln \left|x^{2}-1\right|+\frac{1}{x+1}+C \end{aligned} ==(x+1)2(x1)x2+1dx[2(x+1)1(x+1)21+2(x1)1dx]21lnx21+x+11+C

例四(分母无实根)

∫ x 2 + 1 x 4 + 1 d x \int \frac{x^2+1}{x^4+1}\mathrm{d}x x4+1x2+1dx
解:
F ( x ) = 1 2 ∫ d x x 2 − 2 x + 1 + 1 2 ∫ d x x 2 + 2 x + 1 = 1 2 ∫ d x ( x − 2 2 ) 2 + 1 2 + 1 2 ∫ d x ( x + 2 2 ) 2 + 1 2 = 1 2 arctan ⁡ ( 2 x − 1 ) + 1 2 arctan ⁡ ( 2 x + 1 ) + C \begin{aligned} F(x)=& \frac{1}{2} \int \frac{d x}{x^{2}-\sqrt{2} x+1}+ \frac{1}{2} \int \frac{d x}{x^{2}+\sqrt{2} x+1} \\ =& \frac{1}{2} \int \frac{d x}{\left(x-\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}+ \frac{1}{2} \int \frac{d x}{\left(x+\frac{\sqrt{2}}{2}\right)^{2}+\frac{1}{2}}\\ =&\frac{1}{\sqrt{2}} \arctan (\sqrt{2} x-1)+ \frac{1}{\sqrt{2}} \arctan (\sqrt{2} x+1)+C \end{aligned} F(x)===21x22 x+1dx+21x2+2 x+1dx21(x22 )2+21dx+21(x+22 )2+21dx2 1arctan(2 x1)+2 1arctan(2 x+1)+C

例五(经典题)

∫ d x x 3 + 1 \int \frac{\mathrm{d} x}{x^{3}+1} x3+1dx
解:
∫ d x x 3 + 1 = ∫ [ 1 3 ( x + 1 ) − x − 2 3 ( x 2 − x + 1 ) ] d x = 1 3 ∫ d x x + 1 − 1 6 ∫ 2 x − 1 x 2 − x + 1   d x + 1 2 ∫ d ( x − 1 2 ) ( x − 1 2 ) 2 + 3 4 = 1 6 ln ⁡ ( x + 1 ) 2 x 2 − x + 1 + 1 3 arctan ⁡ 2 x − 1 3 + C . \begin{aligned} & \int \frac{\mathrm{d} x}{x^{3}+1}\\ =&\int\left[\frac{1}{3(x+1)}-\frac{x-2}{3\left(x^{2}-x+1\right)}\right] \mathrm{d} x \\ =& \frac{1}{3} \int \frac{\mathrm{d} x}{x+1}-\frac{1}{6} \int \frac{2 x-1}{x^{2}-x+1} \mathrm{~d} x+\frac{1}{2} \int \frac{\mathrm{d}\left(x-\frac{1}{2}\right)}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} \\ =& \frac{1}{6} \ln \frac{(x+1)^{2}}{x^{2}-x+1}+\frac{1}{\sqrt{3}} \arctan \frac{2 x-1}{\sqrt{3}}+C . \end{aligned} ===x3+1dx[3(x+1)13(x2x+1)x2]dx31x+1dx61x2x+12x1 dx+21(x21)2+43d(x21)61lnx2x+1(x+1)2+3 1arctan3 2x1+C.

例六(最好别用我们的范式)

∫ d x x 4 − 1 \int \frac{\mathrm{d} x}{x^{4}-1} x41dx
解:
∫ d x x 4 − 1 = 1 2 ∫ [ 1 x 2 − 1 − 1 x 2 + 1 ] d x = 1 4 ln ⁡ ∣ x − 1 x + 1 ∣ − 1 2 arctan ⁡ x + C \begin{aligned} &\int \frac{\mathrm{d} x}{x^{4}-1}\\ =&\frac{1}{2} \int\left[\frac{1}{x^{2}-1}-\frac{1}{x^{2}+1}\right] \mathrm{d} x\\ =&\frac{1}{4} \ln \left|\frac{x-1}{x+1}\right|-\frac{1}{2} \arctan x+C \end{aligned} ==x41dx21[x211x2+11]dx41lnx+1x121arctanx+C

结语

至此, 有理函数积分的范式就介绍完了. 但是切忌盲目使用此方法, 老实说这种范式更加适合计算机——没有任何技巧性但是运算量较大. 更多时候积分的题目还是需要运用一些技巧灵活应对, 不过当你手足无措的时候, 不要忘了还有这样一套办法.

祝你好运!

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值