题目大意:在原本的汉诺塔游戏基础上加一根柱子,移动策略是:要移动N个汉诺塔,先用4根柱子把K个到一个柱子,然后用其余3根把剩下的N-K个移动到目标柱子,再用4根把初始的K个移动到目标柱子。
关键的问题是找到每个N的K是多少,观察可以发现规律是:随着K的递增,其实移动的次数Fn(K)先递增后递减,然后F1(K),F2(K),...的最大值随着K的增大递增。要形式化证明似乎比较困难。。不过在题目的范围内这是可以AC的。程序中维护这个当前使得Fi(K)最大的K,然后递推。
import java.util.*;
import java.math.*;
public class Main{
public static void main(String[] args){
Scanner input=new Scanner(System.in);
int u,n;
final BigInteger TWO=new BigInteger("2");
BigInteger[] a=new BigInteger[210];
BigInteger[] d=new BigInteger[10010];
BigInteger minp;
a[0]=BigInteger.ZERO;
for(int i=1;i<=200;i++){
a[i]=a[i-1].multiply(TWO).add(BigInteger.ONE);
}
d[0]=BigInteger.ZERO;
d[1]=BigInteger.ONE;
d[2]=new BigInteger("3");
u=1;
for(int i=3;i<=10000;i++){
minp=d[u].multiply(TWO).add(a[i-u]);
while((u<i-1)&&(minp.compareTo(d[u+1].multiply(TWO).add(a[i-u-1]))>0)){
minp=d[u+1].multiply(TWO).add(a[i-u-1]);
u++;
}
d[i]=minp;
}
while(input.hasNext()){
n=input.nextInt();
System.out.println(d[n]);
}
}
}