2024年诺贝尔化学奖刚刚揭晓!一半授予大卫·贝克(David Baker),“以表彰在计算蛋白质设计方面的贡献”;另一半则共同授予德米斯·哈萨比斯(Demis Hassabis)和约翰·M·詹珀(John M. Jumper),“以表彰他们在蛋白质结构预测方面的成就”。
昨天刚刚公布的2024 年诺贝尔物理学奖,则授予了约翰-霍普菲尔德(John J. Hopfield)和图灵奖得主、AI教父杰弗里-辛顿(Geoffrey E. Hinton),"以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明"。Hinton自己都没想到!
AI for Science的时代已经全面到来!
让ChatGPT 来帮我们展望一下未来吧:
“ 在过去的几十年里,科学研究主要依赖于两种模式:理论和实验。AI的引入则为科学带来了第三种模式,即数据驱动的发现。随着计算能力的提升,AI能处理海量复杂的数据,从中提取出潜藏的规律和模式,解锁科学研究中极其复杂的问题。具体来看:
1 更快的科学发现:AI能够极大加速科学进程。例如,在药物研发中,传统的实验设计和测试过程往往需要数年甚至更长时间,而AI则可以在短短几周或几个月内通过计算模拟找到潜在的候选分子。类似地,在材料科学中,AI能够通过预测新材料的结构和性能,加速材料设计和测试流程。
2 复杂问题的突破:很多科学问题的复杂性超出了传统方法的承受范围,AI为此带来了突破。例如,蛋白质折叠问题几十年来困扰了生物学家,而AlphaFold通过深度学习算法成功地预测了蛋白质的三维结构,为理解生命的基本机制开辟了全新的路径。同样,天体物理学中,AI被用于分析大量宇宙数据,帮助科学家发现新天体和现象。
3 跨学科融合:AI正在将不同学科联系起来,形成跨学科合作的全新模式。生物学、物理学、化学、材料科学、气候学等学科都通过AI工具彼此关联,使得解决复杂的科学问题成为可能。未来,AI可能在更广泛的学科间架起桥梁,推动知识的综合应用。”
在这波AI浪潮中,每个人都可以借助AI成为超级个体!让我们一起努力,结伴同行!
#ChatGPT助力论文写作