AI工具的爆发式增长正在改变科研生态。2022年底,大多数人只是把ChatGPT当作谷歌替代品或娱乐工具时,科研人员很快开发了它在学术领域的应用价值。
如今,越来越多的科研专用AI工具涌现,帮助我们获取最新研究、理解复杂主题、设计实验问题和润色写作。
一项调查显示,许多科研人员日常几乎每天都会用AI。
印度理工学院古瓦哈提分校土木工程博士生Mohammed Shafi表示,他每天都会深度使用AI:他搭建了自己专属的AI工具流,这套工具链能够帮助他快速掌握最新研究进展、理解复杂概念、优化实验设计、组织文献写作和引用,极大缓解了他的学业压力。
Nature杂志针对不同科研场景,总结了一些实用AI工具:
1 文献综述提效:
Semantic Scholar 首席科学家Daniel Weld指出,目前深度研究(Deep Research)类AI产品发展迅猛。
(娜姐之前介绍过的好几款免费AI产品都是Semantic Scholar所属的Ai2公司的)
Google的Gemini Deep Research和OpenAI的Deep Research是该领域佼佼者。你只需输入你的研究问题或上传相关文档,就能让AI自动检索生成全面深入的报告,输出内容不仅包括文字,还可以搭配图表,并附详细文献引用。
MIT的博士生Chuck Downing对这些工具的评价颇高,他在研究减少工厂碳排放方案时使用了OpenAI Deep Research,“即使我对这个领域毫无了解,也能很快形成清晰的认知。相较我过去用的其他方法,这套工具能更精准地找到高质量文献,并用清晰易懂的方式呈现给我。”
此外,SciSpace、Claude、NotebookLM、PDF.ai等平台还能实现“与PDF对话”,用户上传目标文献后即可互动问答,快速理解文章核心思想。
关于这些工具的详细测评,可以看娜姐写的文章:
-
Deep research深度研究:ChatGPT/ Gemini/ Perplexity/ Grok哪家最强?(实测对比分析)
-
谷歌 Gemini 2.0 Flash 升级版深度研究:能否超越 OpenAI deep research?(实测对比)
2 论文选题和实验设计
AI整合信息的能力使发现研究空白、寻找论文选题变得更容易。
Research Rabbit能基于一篇“种子论文”,快速建立由主题、作者、研究方法串联的网络图谱。将这些结果输入ChatGPT,就能"发现研究中隐藏的联系和空白"。
AI工具在实验设计和执行中也越来越强大。MIT博士生Zhichu Ren开发的CRESt软件整合了多个AI技术,形成增强型聊天机器人。它可协助设计并运行实验,检索和分析数据,远程操控设备,记录结果,并在实验出现问题时提醒研究人员。
(MIT博士生Zhichu Ren开发的基于ChatGPT的系统CRESt可自动运行实验。
https://chemrxiv.org/engage/chemrxiv/article-details/655417d1dbd7c8b54b477786 )
即使没有这种高级工具,Gemini Deep Research也能生成"个性化多点研究计划",Scite和Elicit等工具可根据提供的论文或假设给出验证理论的实验方案。
3 统计分析与数据可视化
在编程、数据处理方面,GitHub Copilot、Amazon CodeWhisperer、Cursor等代码辅助工具,能大大降低数据整理和统计分析的门槛。
尤其是像Cursor这类工具,让非计算机专业的科研人员也能快速生成代码和图表,大幅提升数据处理效率。
康奈尔大学博士生David Tompkins表示,这些AI极大改善了科研结果的可视化表现:“过去画一个互动图表动辄几百行代码,我基本不会去尝试;而现在只要告诉AI我的想法,它就能一次性生成需要的代码。”
4 写作润色
学术写作一直是AI应用最广泛的领域。针对科研写作的严谨性要求,ChatGPT在翻译润色方面表现出色。娜姐写过:
此外,SciSpace、Coral AI、Quillbot和Whisper等平台的多语言翻译功能对非英语母语科研人尤为重要。
赫尔辛基大学博士生Hincapié-Otero经常用AI检查文章逻辑和语法:"非母语科学家在科研写作上负担过重,AI让我能集中精力处理更重要的事情。"
总结一下,AI正在从多个维度改变科研方式:
把AI当做助手,打造一套从文献阅读,实验设计,到数据分析和论文写作的科研工作流,从而提升效率,解放自己。
----
今天就介绍到这里。
如果觉得有用,欢迎在看、转发和点赞!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。