TensorFlow基础系列(逻辑回归:eager模式)

前言

上一篇逻辑回归的已经不知道是猴年马月写的,这里贴一下eager模式的。很多都api化,好处代码清晰,缺点是有些原来可能就没有那么清晰了。下面我们直接看代码

''' Logistic Regression with Eager API.

A logistic regression learning algorithm example using TensorFlow's Eager API.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)

Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
from __future__ import absolute_import, division, print_function

import tensorflow as tf

# Set Eager API
tf.enable_eager_execution()
tfe = tf.contrib.eager

# Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=False)

# Parameters
learning_rate = 0.1
batch_size = 128
num_steps = 1000
display_step = 100

#这里使用tf.data,高级的api博文会介绍到相关的内容
dataset = tf.data.Dataset.from_tensor_slices(
    (mnist.train.images, mnist.train.labels))
dataset = dataset.repeat(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值