2.矩阵消元
方程组:
x
+
2
y
+
z
=
2
3
x
+
8
y
+
z
=
12
4
y
+
z
=
2
x+2y+z = 2 \\3x+8y+z=12 \\4y+z= 2
x+2y+z=23x+8y+z=124y+z=2
写为矩阵的形式:
[
1
2
1
3
8
1
0
4
1
]
[
x
y
z
]
=
[
2
12
2
]
\left[\begin{matrix} 1 & 2 & 1\\ 3& 8 &1\\ 0&4&1\\ \end{matrix}\right] \left[\begin{matrix} x \\y\\z \end{matrix}\right] = \left[\begin{matrix} 2\\12\\2 \end{matrix}\right]
⎣⎡130284111⎦⎤⎣⎡xyz⎦⎤=⎣⎡2122⎦⎤
直接的解法是通过(1)(2)(3)进行消元运算,当然是很直接的方法,但是不断地重复x,y,=的书写挺无聊,故我们在此用矩阵消元的方式来解该方程,实际上思想完全一致,只是更加简洁.写出增广矩阵:
[
1
2
1
2
3
8
1
12
0
4
1
2
]
\left[\begin{matrix} 1 & 2 & 1&2\\ 3& 8 &1 &12\\ 0&4&1&2\\ \end{matrix}\right]
⎣⎡1302841112122⎦⎤
开始消元:
[
1
2
1
2
3
8
1
12
0
4
1
2
]
−
>
[
1
2
1
2
0
2
−
2
6
0
4
1
2
]
−
>
[
1
2
1
2
0
2
−
2
6
0
0
5
−
10
]
\left[\begin{matrix} 1 & 2 & 1&2\\ 3& 8 &1 &12\\ 0&4&1&2\\ \end{matrix}\right]-> \left[\begin{matrix} 1 & 2 & 1&2\\ 0& 2 &-2 &6\\ 0&4&1&2\\ \end{matrix}\right]-> \left[\begin{matrix} 1 & 2 & 1&2\\ 0& 2 &-2 &6\\ 0&0&5&-10\\ \end{matrix}\right]
⎣⎡1302841112122⎦⎤−>⎣⎡1002241−21262⎦⎤−>⎣⎡1002201−2526−10⎦⎤
故我们消元后得到的矩阵为:
[
1
2
1
2
0
2
−
2
6
0
0
5
−
10
]
\left[\begin{matrix} 1 & 2 & 1&2\\ 0& 2 &-2 &6\\ 0&0&5&-10\\ \end{matrix}\right]
⎣⎡1002201−2526−10⎦⎤
由下向上解得:
z
=
−
2
y
=
2
x
=
4
z=-2\\y=2\\x=4
z=−2y=2x=4
消元过程中行变换是没有影响的,但是列变换将影响变量的位置
我们来分析一下这个过程,泛化一下:
[
∗
∗
∗
∗
∗
∗
∗
∗
∗
]
[
x
y
z
]
=
[
a
b
c
]
\left[\begin{matrix} * & * & *\\ *& * &*\\ *&*&*\\ \end{matrix}\right] \left[\begin{matrix} x \\y\\z \end{matrix}\right] = \left[\begin{matrix} a\\b\\c \end{matrix}\right]
⎣⎡∗∗∗∗∗∗∗∗∗⎦⎤⎣⎡xyz⎦⎤=⎣⎡abc⎦⎤
还是用列向量和行向量的办法去看,该过程可以分为两个角度去看
列向量的线性组合:
[
∗
∗
∗
∗
∗
∗
∗
∗
∗
]
[
x
y
z
]
=
x
[
∗
∗
∗
]
+
y
[
∗
∗
∗
]
+
z
[
∗
∗
∗
]
=
[
a
b
c
]
−
−
−
−
−
−
列
1
−
−
列
2
−
−
−
列
3
\left[\begin{matrix} * & * & *\\ *& * &*\\ *&*&*\\ \end{matrix}\right] \left[\begin{matrix} x \\y\\z \end{matrix}\right] = x \left[\begin{matrix} *\\*\\* \end{matrix}\right]+y \left[\begin{matrix} *\\*\\* \end{matrix}\right]+ z \left[\begin{matrix} *\\*\\* \end{matrix}\right]= \left[\begin{matrix} a\\b\\c \end{matrix}\right]\\------列1 --列2---列3
⎣⎡∗∗∗∗∗∗∗∗∗⎦⎤⎣⎡xyz⎦⎤=x⎣⎡∗∗∗⎦⎤+y⎣⎡∗∗∗⎦⎤+z⎣⎡∗∗∗⎦⎤=⎣⎡abc⎦⎤−−−−−−列1−−列2−−−列3
行向量则是符合矩阵乘法的方式:
行
1
[
∗
∗
∗
]
[
x
y
z
]
=
a
行
2
[
∗
∗
∗
]
[
x
y
z
]
=
b
行
3
[
∗
∗
∗
]
[
x
y
z
]
=
c
行1\left[\begin{matrix} * * * \end{matrix}\right]\left[\begin{matrix} x \\y\\ z \end{matrix}\right] =a\\ 行2\left[\begin{matrix} * * * \end{matrix}\right]\left[\begin{matrix} x \\y\\ z \end{matrix}\right] =b\\ 行3\left[\begin{matrix} * * * \end{matrix}\right]\left[\begin{matrix} x \\y\\ z \end{matrix}\right] =c\\
行1[∗∗∗]⎣⎡xyz⎦⎤=a行2[∗∗∗]⎣⎡xyz⎦⎤=b行3[∗∗∗]⎣⎡xyz⎦⎤=c
原始课程笔记:https://ocw.mit.edu/courses/mathematics/18-06sc-linear-algebra-fall-2011/ax-b-and-the-four-subspaces/elimination-with-matrices/MIT18_06SCF11_Ses1.2sum.pdf