机器视觉
文章平均质量分 86
欢迎来到我们的机器视觉专栏!在这里,我们深入探讨机器视觉领域的最新技术、应用实例与未来趋势。无论你是行业专家、技术爱好者,还是刚刚接触机器视觉的初学者,这里都有你所关心的内容。
dingkm666
这个作者很懒,什么都没留下…
展开
-
机器视觉-7 检测原理之预处理(图像增强)
OpenCV 提供了丰富的图像增强工具,涵盖了从基本的亮度、对比度调整,到复杂的去噪、变换等高级操作。通过这些方法,用户可以大大改善图像质量,或为后续的计算机视觉任务做准备。结合不同的图像增强技术,能够帮助解决各种复杂的图像处理问题。直方图均衡化:改善对比度,适合光照不均的图像。CLAHE:自适应直方图均衡化,适合复杂的光照条件。亮度与对比度调整:直接线性调整图像的亮度和对比度。锐化:增强图像的边缘和细节。边缘检测:检测图像中的显著边缘。伽马校正:非线性调整图像的亮度,适合暗部细节增强。原创 2024-09-21 16:36:49 · 735 阅读 · 0 评论 -
机器视觉-6 检测原理之预处理(滤波)
通过自定义卷积核,可以实现各种特定的滤波操作。OpenCV 提供了filter2D()函数,可以用来对图像应用自定义的卷积核,比如图像锐化、边缘检测等。平均滤波:适用于简单的去噪和平滑操作,但容易模糊边缘。高斯滤波:通过高斯权重平滑图像,适合处理高斯噪声。中值滤波:能有效去除椒盐噪声,且不会明显模糊边缘。双边滤波:在平滑的同时能保持边缘细节,适合细节丰富的图像。自定义滤波:通过自定义卷积核,可以灵活实现各种滤波效果,如锐化、边缘检测等。原创 2024-09-21 15:59:04 · 1016 阅读 · 0 评论 -
机器视觉-5 检测原理之视觉定位
OpenCV 的函数是进行图像模板匹配的基本工具,适用于简单的匹配任务。它易于实现且具有一定的稳定性,但对旋转、缩放等复杂情况不敏感。在需要更高精度和鲁棒性的场景下,可以结合特征匹配算法或深度学习方法。原创 2024-09-20 18:42:55 · 859 阅读 · 0 评论 -
机器视觉-4 检测原理之OpenCV Blob特征检测
在图像处理的背景下,BLOB指的是图像中颜色一致且连接在一起的像素区域。在二值图像中,这些区域通常是由相同像素值(如白色或黑色)组成的。BLOB检测的目标是识别这些连通区域,并提取它们的特征,例如面积、形状、位置等。OpenCV中的BLOB检测工具为图像处理和计算机视觉任务提供了强大的支持。通过设置合理的参数,可以有效检测并分析图像中的连通区域,为各种应用提供可靠的解决方案。随着计算机视觉技术的发展,BLOB检测将继续在各类实际应用中发挥重要作用。原创 2024-09-01 19:20:30 · 1615 阅读 · 0 评论 -
机器视觉-3 光学成像之明场与暗场
在机器视觉中,光学成像的明场(Bright Field)和暗场(Dark Field)是两种常见的成像技术,分别用于不同的检测和分析场景。它们通过不同的光照方式来突出对象的特征,从而帮助识别、检测和测量对象的各类细节。是一种传统的光学成像技术。在这种技术中,光源直接照射到物体上,反射光或透射光直接进入相机或传感器。成像的亮度主要由物体的反射率、透光率以及物体的形状和结构决定。明场照明的定义是光源位于相机视野(FoV)的反射锥内(高角度照明)。暗场成像是通过使光线以倾斜的角度照射到物体上,原创 2024-09-01 17:46:11 · 1991 阅读 · 0 评论 -
机器视觉-2 检测原理之缺陷检测方法
缺陷检测在工业制造和质量控制等领域中至关重要。根据图像背景的复杂程度和特征差异,缺陷检测方法通常分为三类:单调背景、规则纹理背景和无规则图像背景。在单调背景下,阈值分割和差分法能够有效地识别明显的缺陷区域。对于规则纹理背景,模板匹配和Gabor滤波器可以精确检测纹理中的异常变化。此外,傅里叶变换作为一种频域分析工具,能够识别周期性纹理中的缺陷,尤其适用于规则纹理背景下的缺陷检测。在无规则图像背景中,边缘检测、图像分割(如Watershed算法)以及深度学习方法适合用于处理复杂的缺陷模式。原创 2024-08-26 19:15:22 · 1244 阅读 · 0 评论 -
机器视觉-1 常用的机器视觉开发库
机器视觉领域的发展非常迅速,不同的开发库有着各自的优点和局限。无论是进行学术研究、产品开发,还是工程应用,选择合适的工具能够大大提高工作效率和效果。通过了解这些库的特性和功能,开发者可以更好地选择适合自己需求的开发库,并在视觉任务中取得成功。原创 2024-08-25 17:24:26 · 987 阅读 · 0 评论 -
工业视觉检测
工业视觉检测系统通常包括图像采集设备(如高分辨率摄像头)、照明设备、图像处理软件、分析算法以及执行决策、显示结果的输出设备(如PLC控制器、UI)等部分。然后,通过使用传统的图像处理算法或更高级的深度学习方法,对这些特征进行分析,以识别缺陷、进行测量或其他相关的质量控制任务。良好的光学系统是视觉检测的基础。随着技术的进步,特别是在计算机视觉和人工智能领域,工业视觉检测系统的能力将继续提升,进一步扩展其在制造业中的应用范围和效率。根据特定的检测需求,可以使用不同类型的相机,如彩色、黑白、红外和X射线相机。原创 2024-04-07 16:42:00 · 649 阅读 · 0 评论