机器视觉-3 光学成像之明场与暗场

一. 原理介绍        

        在机器视觉中,光学成像的明场(Bright Field)和暗场(Dark Field)是两种常见的成像技术,分别用于不同的检测和分析场景。它们通过不同的光照方式来突出对象的特征,从而帮助识别、检测和测量对象的各类细节。

明场成像原理:是一种传统的光学成像技术。在这种技术中,光源直接照射到物体上,反射光或透射光直接进入相机或传感器。成像的亮度主要由物体的反射率、透光率以及物体的形状和结构决定。明场照明的定义是光源位于相机视野(FoV)的反射锥内(高角度照明)。

暗场成像原理:暗场成像是通过使光线以倾斜的角度照射到物体上,只有散射光或反射光进入相机或传感器,直接反射光不会进入镜头,因此在图像中背景通常是黑暗的,只有物体的边缘或细微结构被高亮显示。

如下图示蓝色圆锥确定了相机的视野(FoV)。位于目标前面的光被反射回相机,而FoV则由内侧和外侧的反射角看到。在二维模型中,这也称为“W’照明,因为内角和外角创造了一个“W”形的边界。
入射角在“W”边界之外的反射光称为暗场照明。可以看到光与目标的角度要小得多(低角度照明),由于大部分光被反射到远离相机镜头的地方,形成了高对比度。

### 使用OpenCV实现暗场检测 暗场检测通常涉及识别图像中亮度显著低于正常范围的区域。这可以通过多种方式来完成,包括但不限于直方图分析、灰度转换以及自适应阈值处理等方法。 #### 方法一:基于灰度和直方图的简单暗场检测 通过将彩色图像转换为灰度图像并应用简单的全局阈值化操作,可以初步筛选出较暗的部分: ```python import cv2 import numpy as np def simple_dark_field_detection(image_path): img = cv2.imread(image_path, cv2.IMREAD_COLOR) # 转换为灰度图像 gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)[^1] # 计算平均亮度水平作为参考标准 avg_brightness = np.mean(gray_img) # 定义一个较低的标准用于判断是否属于暗区 threshold_value = max(0, avg_brightness - 50) _, binary_mask = cv2.threshold(gray_img, threshold_value, 255, cv2.THRESH_BINARY_INV) return binary_mask ``` 此代码片段展示了如何读取一张图片,并将其转化为单通道灰度形式;接着计算整个画面的平均亮度值减去一定偏移量得到阈值,最后利用`cv2.threshold()`函数创建二值掩码表示可能存在的暗场位置。 #### 方法二:采用局部自适应阈值法增强效果 对于光照不均匀的情况,上述固定阈值的方式可能会失效。此时可考虑使用更复杂的自适应阈值算法如Otsu's Binarization或Gaussian adaptive thresholding: ```python def advanced_dark_field_detection(image_path): img = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) block_size = 11 # 邻域大小 C = 2 # 常数项调整 # 应用高斯模糊减少噪声影响 blurred = cv2.GaussianBlur(img,(block_size,block_size),0) # 自适应阈值处理 dark_areas = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, blockSize=block_size,C=C) return dark_areas ``` 这里先对输入图像进行了轻微平滑滤波以降低随机噪点干扰,再调用`cv2.adaptiveThreshold()`来进行更加灵活精准的暗区定位。 这两种方案都可以有效地帮助识别图像中的潜在暗场部分,具体选择取决于应用景的具体需求和技术条件。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值