计科1111-1114班第七周讲义、课外作业(动态规划,截止日期:2014年4月25日23点-周五晚,学委飞信通知同学)

第七周的计科课程聚焦动态规划,作业涉及《算法概论》第六章内容,涵盖动态规划的基本性质和应用。作业要求学委通知同学,强调态度和质量。预习内容为线性规划与归约。推荐阅读分享学长的编程之路。讲解内容包括有向无环图最短路径、最长递增子序列、编辑距离和背包问题。
摘要由CSDN通过智能技术生成

    《算法设计与分析》课程中,作业所指教材,均为《算法概论》(Sanjoy Dasgupta等,清华大学出版社,2008年7月第1版)。

    第7周,主要对教材 第6章 动态规划 进行了探讨。Dynamic Programming(简称DP),是一个通用的问题求解方法,主要用于运筹学方面的最优化问题,由于其对思维能力的高要求,很受各大公司笔试、面试欢迎。同学们在开始学习时,可以循序渐进,先理解教材中问题的精要并总结,然后去编程实现2-3个问题,最后去网上找3-10道笔试、面试题求解来开拓思路。

一:作业内容
    大家至少完成以下作业中的一道题,以后从事IT业的同学,争取全部完成。
(1) 背包问题。对上文中提到的背包问题提供的表1(数据文件下载 Knapsack.txt,第一行为背包总重量15,物品数量5;第2-6行,分别为第1-5件物品的重量与价值),W=15,编程计算最终背包所装物品的编号、总重量与总价值。要求能够把构造的二维表格输出到文件KnapsackResult.txt中。 博文标题:第7周作业1——背包问题
(2) 编辑距离。对数据文件edit.txt(下载请点击: edit.txt),其中第一行是需要计算的单词对,第2-4行,分别为两个词汇,请就算将第一个单词变换成第二个单词所需要的最少操作数(即:编辑距离)。请输出每组词汇的编辑距离,并尝试输出其对其方式(类似于教材P177最下行所示,- 号代表一个空隙)。 博文标题:第7周作业2——编辑距离
(3) 最长递增子序列。见博文  最长递增子序列详解(longest increasing subsequence)对此问题的解释,请先编程输出10个元素一组的随机整数数列,然后利用动态规划算法求其最长递增子序列的长度 及 具体的子序列,请多次测试与验证所编写的算法。 博文标题第7周作业3——最长递增子序列

二:作业要求

1. 请各班学委飞信通知同学完成作业。 
2. 作业计入平时成绩,计分依据为大家的完成程度——态度(做 / 未做)。老师会根据大家作业的质量选择若干学生进行评论,以及提供个性化教学的依据。请大家依据自身能力,尽可能提供高水平的作业,为提高自身能力全力以赴。
3. 本次作业,老师主要检查本班学号位于11-20号的同学 和 申请免签到的同学,以及抽查部分其他同学,请大家相互转告。


三:提前预习

    预习 第7章 线性规划与归约(P205开始)。理解线性规划问题的提出、网络流问题、二部图匹配,重点为单纯形算法(P232-241)。


四:推荐阅读

    成功不是偶然,对编程或其他方面的兴趣也是一个过程。只有当我们了解一些基础后,才可能产生并激发兴趣。这里通过一篇博文,看一下大家的学长 郝中奎 的编程之路,以及软件专业大三学生骆宏的兴趣之路


五:讲授内容(整理)

(1)有向无环图的最短路径问题。Directed acyclic graph(简称:DAG),这是我们第3次、第4次接触到有向无环图的应用了。首先大家回顾一下,DAG有哪些特性?前面的章节中我们哪些问题有DAG有关?对DAG,我们又开展了哪些工作?温故而知新。

    DAG的一个重要性质是节点可以进行线性排列(拓扑排序),可以使用深度优先搜索(DFS),并标记每一个节点的第一次访问(pre)和最后一次访问时间(post),最后post的逆序就是DAG的拓扑排序,其实也是节点在进行DFS搜索时,出栈的逆序就是拓扑排序。

    怎样计算DAG的最短路径呢?第4章(P135-136)我们按照图中节点的拓扑排序的顺序依次计算节点的距离,其计算思路进一步可以表述如下所示的递推公式。



所以计算源点S到节点D的距离,可以通过先计算S到B、S到C的距离后,利用上述公式求解。以此类推,最终我们可以通过依次计算S到S、S到C、S到A……等把每个节点的距离计算出来。算法如下:


要点:任何一个动态规划问题,都可以等价为一个有向无环图DAG问题。

(2)动态规划的两个基本性质。(a)最优子结构性质:如果问题的最优解所包含的子问题的解也是最优的,我们就称该问题具有最优子结构性质(即满足最优化原理);(b)重叠子问题性质:子问题重叠性质是指在用递归算法自顶向下对问题进行求解时,每次产生的子问题并不总是新问题,有些子问题会被重复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只计算一次,然后将其计算结果保存在一个表格中,当再次需要计算已经计算过的子问题时,只是在表格中简单地查看一下结果,从而获得较高的效率。

(3)最长递增子序列。输入类似下图中的一个数字序列,从中按顺序挑选一个子集,使得该子序列中数字满足严格单调递增关系。如下面,数列中的2、3、6、9 与 2、3、6、7等数列就是该数列的最长递增子序列。怎样计算呢?利用动态规划方法的性质,我们需要思考得到一个重叠子问题的结构。思考:如果2、3、6、9是一个最长递增子序列,那么去掉最后数字9与7之后,2、3、6也是数列5、2、8、6、3、6的最长递增子序列(最优子结构性质)。所以计算包括某一个数字(如9)并到该数字结束的的最长递增子序列,可以考虑该数字之前的子序列(5、2、8、6、3、6)中与9满足严格递增关系的数字(如 5、2、8、6、3、6),如果计算得到了5、2、8、6、3、6等数字的最长递增子序列,选择其中最长的一条,则可以得到包括9在内的最长递增子序列。运算关系见下下图。


    未完待续……

(4)编辑距离。查找两个单词的相似度,在拼写检查等很多场合中都有应用。前面我们补充过 利用余弦定理与TF-IDF来计算文档相似性(TF-IDF与余弦相似性的应用(一):自动提取关键词TF-IDF与余弦相似性的应用(二):找出相似文章),今天我们学习另一种距离定义方式。

    编辑距离:将一个字符串变换为另一个字符串所需最小编辑操作——包括插入、删除、字符替换的次数(教材P178)。如下图中两个单词SNOWY和SUNNY,第一种方式次数为3,第二种方式次数为5,但由于编辑距离指的是最小编辑操作,所以这两个单词的编辑距离为3。把上面这个单词变换为下面单词,只需要在S后插入U,把O替换为N,删除W,一共三个操作(当然还有其他方式)。


    怎样把编辑距离的问题用动态规划方法求解,首先需要定义最优子结构。把单词 x[1···m] and y[1···n] 分成两部分:前缀部分和剩余部分,如前缀(Prefix)部分x[1···i] 和 y[1···j],定义编辑距离的子问题E(i,j),则原问题即为计算E(m,n)。如 x[1···i]  和 y[1···j],其对齐方式有三种(如下图,教材P179)。

如两个单词 EXPONENTIAL与POLYNOMIAL,其E(7,5)如下图所示。现在我们就可以写出递归形式了。 E(i,j)=min{1+E(i −1,j), 1+E(i,j −1), diff(i,j)+E(i −1,j −1)} ,寻找三种对齐方式下的最小编辑距离,并且成功的把E(i,j)问题转化为求解 E(i −1,j),E(i,j −1),E(i −1,j −1)等小一点的问题。


明白了这一点,我们就可以按照算法伪代码,编出具体程序代码了。请思考图6-4(教材P180),在计算得到编辑距离E(m,n)后,我们怎样得到两个字符串的对齐方式呢?怎样增加最少的代码实现呢?


(5)背包问题。网上有经典的 背包问题九讲,以及在此基础上的进一步学习(背包问题九讲笔记_01背包),研究与总结的人很多,如背包问题 笔试题,大家需要掌握单副本下的背包问题(教材P185)。

    单副本的背包问题(Knapsack without repetition):N件物品,分别重w1,...,wn,价值为v1,...,vn,现有一个背包最大容量为W,怎样的组合才能够使背包中装下的物品价值最高?

摘自:    knapsack-problem(http://www.answers.com/topic/knapsack-problem)

假设我们对物品进行编号,则问题转化为 W=15,且物品编号、重量与价值如下表所示。为此,定义子问题,使包含关于哪件物品已经被使用过的信息,引入两个参数w、j,定义如下

K(w,j) = 基于背包容量w和物品1,…,j所能得到的最高价值,其中0≤j ≤n


表1:背包问题物品价值
物品重量价值
1410
2124
312
422
511

我们的目标是计算K(W,n)。如何把K(w,j) 用更小的子问题来表示呢?很简单:要么需要选择物品j以获得最高价值,要么不需要:

第一种情况仅当wj ≤w时成立,换句话说,K(w,j)  可以用子问题 K(·,j −1)来表示。于是,算法需要填写一个二维的表格,共有W+1行 n+1列,算法复杂度为O(nW),算法伪代码如下,实现之。


(6) 矩阵连乘。大家根据教材P186-188,自己进行理解即可。书只有多读、多思考、多实践,才会有更深的体会。



评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>