python笔记-旧版
文章平均质量分 67
从0到1python笔记
白拾ShiroX
聚焦人工智能中的具身智能、集成学习、多模态、生成模型的研究,连续创业者,ACGN爱好者。正在努力肝论文中,真希望时间变慢一点啊。
展开
-
Python F-String 占位符
基础知识f-string 使用 f 开头,字符串中的表达式用 {} 括起来。表达式是python代码,最后显示的是表达式的返回值。其他的类型码/占位符/格式的描述符放在表达式的冒号:之后。123456f'String words and codes {content : format}'f'输出是{1+1}' #'输出是' + str(2)a = 10f'输出是{a:.2f}' #'输出...原创 2021-09-03 09:48:11 · 913 阅读 · 0 评论 -
Python 泰森图上色 Colorize Voronoi Diagram Template
StackoverflowColorize Voronoi DiagramIPython Cookbook, Second Edition (2018)14.5. Computing the Voronoi diagram of a set of pointstemplateimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltfrom scipy.spatial import Voronoi, voronoi原创 2021-09-07 08:14:35 · 389 阅读 · 0 评论 -
Python多核心/多线程运算模板 (multi-core computing)
one argument processNotice that args should be itrable. like index. But we can use a little trick to tackle none iterable ones.def func(resolver): return resolver.getFormatedVocaloidDataInDict()We put a “,” after none iterable args.results = [pool原创 2021-09-07 08:15:45 · 277 阅读 · 0 评论 -
MP3 to Wav to Midi
Converting mp3 to wav to midi is a task that extract notes from original mp3 files by computer. reference projectaudio/wav to midi mp3 to wav12345678from pydub import AudioSegment# files ...原创 2021-08-02 00:31:16 · 383 阅读 · 0 评论 -
Python 爬虫
相较于之前写过的爬去B站动态的javav程序,Python明显简单很多。其中有一个很重要的原因,我们的java程序写的是一个实时的爬虫,一个监控,而这次接触的Python爬虫很明显仅仅只需要爬下来就可以了。 参考文献爬取图片html,主要是API calling json微博 json,会翻页 主要框架post requestresolve received files/data ...原创 2021-08-02 00:42:50 · 315 阅读 · 0 评论 -
利用函数式编程思想理解 Python
关键词:函数式编程,python底层理解,可靠性,效率。print 是一个python的函数,print的 作用 是在终端中打印,print的返回值为None。这里我们可以换个理解的方式:print 是一个python的函数,print的返回值是None,print的 副作用 是在终端中打印。上面两句的区别仅仅是语序的不同以及一个词的差异。但是这两句背后的思想大相径庭。第一句强调的是作用,是一个函数能够做什么事情,我们在记忆的时候往往是忽略返回值None的。第二句强调的是函数本身的意义,即原创 2021-09-07 08:02:45 · 151 阅读 · 0 评论 -
Python 编程的风味 施工中~
研读PEP8原创 2021-09-23 08:54:04 · 638 阅读 · 0 评论 -
Django 开发:静态文件,应用和模型层
静态文件什么是静态文件不能与服务器端做动态交互的文件都是静态文件如:图片,css,js,音频,视频,html文件(部分)静态文件配置在 settings.py 中配置一下两项内容:配置静态文件的访问路径通过哪个url地址找静态文件STATIC_URL = ‘/static/’说明:指定访问静态文件时是需要通过 /static/xxx或 127.0.0.1:...原创 2021-11-16 07:13:16 · 182 阅读 · 0 评论 -
Django 开发:Cookie、Session和缓存
cookies 和 session会话 - 从打开浏览器访问一个网站,到关闭浏览器结束此次访问,称之为一次会话HTTP协议是无状态的,导致会话状态难以保持试想一下,如果不保持会话状态,在电商网站购物的场景体验?Cookies和Session就是为了保持会话状态而诞生的两个存储技术 cookiescookies是保存在客户端浏览器上的存储空间Chrome 浏览器 可能通...原创 2021-11-20 08:17:58 · 375 阅读 · 0 评论 -
Django 开发:模板语言
Django的框架设计模式MVC 设计模式MVC 代表 Model-View-Controller(模型-视图-控制器) 模式。作用: 降低模块间的耦合度(解耦)MVCM 模型层(Model), 主要用于对数据库层的封装V 视图层(View), 用于向用户展示结果C 控制(Controller ,用于处理请求、获取数据、返回结果(重要)MVC模式如图:MTV 模式...原创 2021-11-08 01:16:11 · 215 阅读 · 0 评论 -
Numpy 中的 Ndarray
numpy概述Numerical Python,数值的Python,补充了Python语言所欠缺的数值计算能力。Numpy是其它数据分析及机器学习库的底层库。Numpy完全标准C语言实现,运行效率充分优化。Numpy开源免费。 numpy历史1995年,Numeric,Python语言数值计算扩充。2001年,Scipy->Numarray,多维数组运算。2005年,...原创 2021-11-20 08:25:49 · 1025 阅读 · 0 评论 -
Django 开发:中间件和SDRF扩展知识
中间件 Middleware中间件是 Django 请求/响应处理的钩子框架。它是一个轻量级的、低级的“插件”系统,用于全局改变 Django 的输入或输出。每个中间件组件负责做一些特定的功能。例如,Django 包含一个中间件组件 AuthenticationMiddleware,它使用会话将用户与请求关联起来。中间件类:中间件类须继承自 django.utils.dep...原创 2021-11-20 08:18:05 · 154 阅读 · 0 评论 -
Pandas笔记
pandas介绍Python Data Analysis Librarypandas是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入 了大量库和一些标准的数据模型,提供了高效地操作大型结构化数据集所需的工具。 pandas核心数据结构数据结构是计算机存储、组织数据的方式。 通常情况下,精心选择的数据结构可以带来更高的运行或者存储效率。数据结构往往同高...原创 2021-11-20 08:26:11 · 253 阅读 · 0 评论 -
Matplotlib 笔记
基本绘图 绘图核心API案例: 绘制简单直线123456789101112131415161718192021import numpy as npimport matplotlib.pyplot as plt# 绘制简单直线x = np.array([1, 2, 3, 4, 5])y = np.array([3, 6, 9, 12, 15])# 绘制水平线、垂线plt.axhline(y...原创 2021-11-20 08:26:30 · 300 阅读 · 0 评论 -
机器学习第一部分:概述
人工智能课程概述 什么是人工智能人工智能(Artificial Intelligence)是计算机科学的一个分支学科,主要研究用计算机模拟人的思考方式和行为方式,从而在某些领域代替人进行工作. 人工智能的学科体系以下是人工智能学科体系图:机器学习(Machine Learning):人工智能的一个子学科,研究人工智能领域的基本算法、原理、思想方法,机器学习研究的内容在其它子学科都会...原创 2021-11-25 06:26:23 · 296 阅读 · 0 评论 -
机器学习第五部分:降维问题
参见:机器学习四大降维方法 PCA降维参见:【机器学习】降维——PCA(非常详细)参见:机器学习实战8-sklearn降维(PCA/LLE) LDA降维参见:【机器学习实战】降维方法的sklearn实现----PCA和LDA LLE降维参见:机器学习实战8-sklearn降维(PCA/LLE) 拉普拉斯特征映射参见:python实现拉普拉斯特征图降维示例...原创 2021-11-25 06:31:07 · 111 阅读 · 0 评论 -
机器学习第四部分:聚类问题
聚类问题 概述聚类(cluster)与分类(class)问题不同,聚类是属于无监督学习模型,而分类属于有监督学习。聚类使用一些算法把样本分为N个群落,群落内部相似度较高,群落之间相似度较低。在机器学习中,通常采用“距离”来度量样本间的相似度,距离越小,相似度越高;距离越大,相似度越低. 相似度度量方式 ① 欧氏距离相似度使用欧氏距离来进行度量. 坐标轴上两点x1,x2x_1, x_2x...原创 2021-11-25 06:31:06 · 981 阅读 · 0 评论 -
深度学习概述
注:封面画师:新雨林-触站 说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。 b{color:rgba(0,0,0,0.75)} 深度学习概述深度学习概述引入深度学习巨大影响人工智能划时代事件什么是深度学习深度神经网络深度学习与机器学习的关系深度学习的定义深度学习的...原创 2021-11-30 11:43:03 · 345 阅读 · 0 评论 -
深度学习实例第二部分:OpenCV
OpenCV安装执行以下命令安装opencv-python库(核心库)和opencv-contrib-python库(贡献库)。注意:命令拷贝后要合成一行执行,中间不要换行。12345# 安装opencv核心库pip3 install --user opencv-python==3.4.2.16 --index-url https://pypi.tuna.tsinghua.edu.cn/s...原创 2021-12-01 02:16:31 · 286 阅读 · 0 评论 -
机器学习第三部分贰:决策树分类
什么是决策树决策树是一种常见的机器学习方法,其核心思想是相同(或相似)的输入产生相同(或相似)的输出,通过树状结构来进行决策,其目的是通过对样本不同属性的判断决策,将具有相同属性的样本划分到一个叶子节点下,从而实现分类或回归. 以下是几个生活中关于决策树的示例.【示例1】男生看女生与女生看男生的决策树模型【示例2】挑选西瓜的决策树模型在上述示例模型中,通过对西瓜一系列特征(色泽、...原创 2021-11-25 06:30:58 · 319 阅读 · 0 评论 -
机器学习第三部分肆:朴素贝叶斯
朴素贝叶斯是一组功能强大且易于训练的分类器,它使用贝叶斯定理来确定给定一组条件的结果的概率,“朴素”的含义是指所给定的条件都能独立存在和发生. 朴素贝叶斯是多用途分类器,能在很多不同的情景下找到它的应用,例如垃圾邮件过滤、自然语言处理等. 概率 定义概率是反映随机事件出现的可能性大小. 随机事件是指在相同条件下,可能出现也可能不出现的事件. 例如:(1)抛一枚硬币,可能正面朝上,可能反面朝...原创 2021-11-25 06:30:59 · 119 阅读 · 0 评论 -
Pandas 和 Numpy 中的统计
数值型描述统计 算数平均值S=[s1,s2,...,sn]S = [s_1, s_2, ..., s_n]S=[s1,s2,...,sn]样本中的每个值都是真值与误差的和。mean=(s1+s2+...+sn)nmean = \frac{(s_1 + s_2 + ... + s_n) }{n}mean=n(s1+s2+...+sn)算数平均值表示对真值的无偏估计。123...原创 2021-11-22 09:51:03 · 372 阅读 · 0 评论 -
深度学习基础 叁:反向传播算法
注:封面画师:新雨林-触站 说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。 b{color:rgba(0,0,0,0.75)} 反向传播这里对反向传播的讲解比较奇怪,可能比较适合初学者理解。想要通过严谨的数学推导理解反向传播的同学,可以搜索一下。 反向传播算法反向传播算法...原创 2021-11-30 11:43:06 · 697 阅读 · 0 评论 -
深度学习基础 贰:损失函数与梯度下降
注:封面画师:新雨林-触站 说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。 b{color:rgba(0,0,0,0.75)} 损失函数与梯度下降损失函数与梯度下降损失函数损失函数的作用什么是损失函数梯度下降常用的损失函数什么是梯度梯度下降导数与偏导数学习率梯...原创 2021-11-30 11:43:05 · 3921 阅读 · 0 评论 -
深度学习实例第三部分:TensorFlow
注意:此代码全部为TensorFlow1版本。 查看Tensorflow版本1234567891011from __future__ import absolute_import, division, print_function, unicode_literals# 导入TensorFlow和tf.kerasimport tensorflow as tffrom tensorflow imp...原创 2021-12-01 02:16:42 · 482 阅读 · 0 评论 -
机器学习第二部分下:决策树回归
决策树回归核心思想:相似的输入必会产生相似的输出。例如预测某人薪资:年龄:1-青年,2-中年,3-老年学历:1-本科,2-硕士,3-博士经历:1-出道,2-一般,3-老手,4-骨灰性别:1-男性,2-女性年龄学历经历性别==>薪资1111==>6000(低)2131==>10000(中)3341==&...原创 2021-11-25 06:27:23 · 460 阅读 · 0 评论 -
机器学习第六部分:模型评估
性能度量 ① 错误率与精度错误率和精度是分类问题中常用的性能度量指标,既适用于二分类任务,也适用于多分类任务.错误率(error rate):指分类错误的样本占样本总数的比例,即 ( 分类错误的数量 / 样本总数数量)精度(accuracy):指分类正确的样本占样本总数的比例,即 (分类正确的数量 / 样本总数数量)精度=1−错误率精度 = 1 - 错误率精度=1−错误率...原创 2021-11-25 06:31:14 · 550 阅读 · 0 评论 -
机器学习第三部分壹:逻辑回归
逻辑回归 概述 什么是逻辑回归逻辑回归(Logistic Regression) 虽然被称为回归,但其实际上是分类模型,常用于二分类。逻辑回归因其简单、可并行化、可解释强而受到广泛应用。二分类(也称为逻辑分类)是常见的分类方法,是将一批样本或数据划分到两个类别,例如一次考试,根据成绩可以分为及格、不及格两个类别,如下表所示:姓名成绩分类Jerry861Tom...原创 2021-11-25 06:30:57 · 161 阅读 · 0 评论 -
机器学习第七部分:模型优化
验证曲线与学习曲线 ① 验证曲线验证曲线是指根据不同的评估系数,来评估模型的优劣. 例如,构建随机森林,树的数量不同,模型预测准确度有何不同?以下是一个验证曲线的示例:1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556# 验证曲线示例i...原创 2021-11-30 06:19:00 · 471 阅读 · 0 评论 -
深度学习实例第四部分:PaddlePaddle
注意:全部代码为PaddlePaddle1版本的代码 Helloworld1234567891011121314# helloworld示例import paddle.fluid as fluid# 创建两个类型为int64, 形状为1*1张量x = fluid.layers.fill_constant(shape=[1], dtype="int64", value=5)y = fluid.l...原创 2021-12-01 02:16:47 · 440 阅读 · 0 评论 -
深度学习框架:TensorFlow1
说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。 b{color:rgba(0,0,0,0.75)} TensorFlow概述 Tensorflow概述Tensorflow概述Tensorflow简介什么是TensorflowTensorflow的特点Tensorflow...原创 2021-12-02 07:53:25 · 120 阅读 · 0 评论 -
Django Python Web 框架基础
Django框架的介绍 起源&现状2005年发布,采用Python语言编写的开源web框架早期的时候Django主做新闻和内容管理的一个重量级的 Python Web框架,Django 配备了常用的大部分组件基本配置路由系统原生HTML模板系统视图 viewModel模型,数据库连接和ORM数据库管理中间件Cookie & Seesion分页...原创 2021-11-08 01:16:10 · 77 阅读 · 0 评论 -
Python 独特的进程池概念
总结放开头创建进程池可以形象的理解为创建了一个能够并行的流水线,只消耗一次创建流水线的成本,处理接收到的的任务。相对的,如果不使用进程池,每个要求并行的任务都会新建一次进程,浪费时间。编程中本来没有进程池的概念的,除了python,其他的语言都是使用线程池(而进程是执行分隔开的任务)。python因为GIL的原因(仅限Cython),线程无法并行,所以把线程池的概念迁移到了进程,命名为进程...原创 2021-10-21 02:52:03 · 245 阅读 · 0 评论 -
Python 高级笔记第七部分:网络并发编程
@ 作者:达内 Python 教学部,吕泽@ 编辑:博主,Discover304 网络并发模型 网络并发模型概述什么是网络并发在实际工作中,一个服务端程序往往要应对多个客户端同时发起访问的情况。如果让服务端程序能够更好的同时满足更多客户端网络请求的情形,这就是并发网络模型。循环网络模型问题循环网络模型只能循环接收客户端请求,处理请求。同一时刻只能处理一个请求,处理完毕后再处理下一...原创 2021-10-15 04:06:45 · 189 阅读 · 0 评论 -
Python 高级笔记第五部分:网络编程
@ 作者:达内 Python 教学部,吕泽@ 编辑:博主,Discover304 网络基础知识 什么是网络计算机网络功能主要包括实现资源共享,实现数据信息的快速传递。 网络通信标准网络的普及需要标准。不同的国家和公司都建立自己的通信标准不利于网络互连,同时多种标准并行情况下不利于技术的发展融合。而一个统一 的通信标准不仅可以实现万物互联,也可以降低开发难度。于是OSI7...原创 2021-10-14 13:00:50 · 264 阅读 · 0 评论 -
Python 高级笔记第四部分:使用Python操作数据库
@ 作者:达内 Python 教学部,吕泽@ 编辑:博主,Discover304 pymysql模块pymysql是一个第三方库,如果自己的计算机上没有可以在终端使用命令进行安装,$sudo pip3 install pymysql。pymysql使用流程建立数据库连接:db = pymysql.connect(...)创建游标对象:cur = db.cursor()游标方法: ...原创 2021-10-14 12:58:21 · 133 阅读 · 0 评论 -
Python 高级笔记第二部分:数据库的概述和MySQL数据表操作
@ 作者:达内 Python 教学部,吕泽@ 编辑:博主,Discover304 数据存储人工管理阶段文件管理阶段 (.txt .doc .xls)数据库管理阶段: 数据组织结构化降低了冗余度,提高了增删改查的效率,容易扩展,方便程序调用处理 基本概念数据库 : 按照数据一定结构,存储管理数据的仓库。数据库是在数据库管理系统管理和控制下,在一定介质上的数据集合。数据库管...原创 2021-09-29 11:42:35 · 264 阅读 · 0 评论 -
Python 笔记第六部分:生成器和函数式编程
迭代Iteration每一次对过程的重复称为一次“迭代”,而每一次迭代得到的结果会作为下一次迭代的初始值。例如:循环获取容器中的元素。具有__iter__函数的对象,可以返回迭代器对象。1234567# 创建:class 可迭代对象名称: def __iter__(self): return 迭代器# 使用: for 变量名 in 可迭代对象: 语句背后的原理是:123456...原创 2021-09-23 01:34:05 · 111 阅读 · 0 评论 -
Python 笔记第五部分:盒子的箱子,异常
模块 Module程序可以拆分成以.py结尾的模块,拆分相似的逻辑。分开以后,把有关联的代码放在一起会更清晰,有利于合作开发。不同文件之间的关联,将目标模块的成员导入到当前模块的作用域中。12345# 你过来,面向过程比较多,因为用的是文件名。import 模块 as 名称# 主动过来,面向对象,直接可以拿来用。from 模块 import 成员1, 成员1, 成员1 当名字有冲突的时...原创 2021-09-17 06:30:18 · 152 阅读 · 0 评论 -
Python 笔记第四部分下:黑盒子的三大特征
封装 数据角度将一些基本数据类型复合成一个自定义类型。将数据与对数据的操作相关联。代码可读性更高(类是对象的模板)。 行为角度向类外提供必要的功能,隐藏实现的细节。简化编程,使用者不必了解具体的实现细节,只需要调用对外提供的功能。可以声明私有成员。无需向类外提供的成员,可以通过私有化进行屏蔽。封装可以开放有用的功能,可以帮助同事更容易阅读和使用代码。做法:命名使用双下划...原创 2021-09-13 03:00:00 · 206 阅读 · 0 评论