逆元模板

本文介绍了计算逆元的几种方法,包括利用扩展欧几里得算法、费马小定理以及欧拉函数。对于质数p,若a与p互质,a的逆元可通过ap-2 mod p获取。此外,还提到了线性时间求所有逆元的策略,通过扫面计算每个数的逆元,时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

扩展欧几里得求逆元:

int extgcd(int a, int b, int &x, int &y)
{
    int d = a;
    if(b != 0)
    {
        d = extgcd(b, a%b, y, x);
        y -= (a / b) * x;
    }
    else x = 1, y = 0;
    return d;
}
int mod_inv(int a, int p) //求a模p的逆元,要求a与p互质
{
  //即是求ax≡1(mod p)中的x的最小正整数,转换一下就是ax+py=1,若a与p不互质,显然无解。若p为负直接p = abs(p)
    int x, y;
    extgcd(a, p, x, y);
    return (x%p + p) % p;
}

费马小定理求逆元:
:设 p 为质数, gcd(a,p)=1 ,那么一定有 ap11(mod p)
当满足以上条件时,根据费马小定理可得 aap2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值