第4章-17 水仙花数
分析
旧式想法:从大位开始计算,先算出最高位。每次需要迭代更新,减去高位数之后,算低一位的数。
博主封心的想法:每次取mod10的结果,再除以10取整数部分,降低位次。
题目
水仙花数是指一个N位正整数(N≥3),它的每个位上的数字的N次幂之和等于它本身。 例如:153=1×1×1+5×5×5+3×3×3。
本题要求编写程序,计算所有N位水仙花数。
输入格式:
输入在一行中给出一个正整数N(3≤N≤5)
输出格式:
按递增顺序输出所有N位水仙花数,每个数字占一行。
解法
旧式,自高位往低位计算
读题不认真,是N次方,而不是仅仅3次方。
s=int(input())
for i in range(pow(10,s-1),pow(10,s)):
tmp=0
n=i
m=0
lst=[]
for j in range(s):
m=int(n/pow(10,s-j-1))
n=n-m*pow(10,s-j-1)
lst.append(m)
for j in range(s):
tmp+=pow(lst[j],s)
if tmp==i:
print(i)
改进
s=int(input())
for i in range(pow(10,s-1),pow(10,s)):
n=i
sum=0
j=0
while n>=1:
j=n%10
sum+=pow(j,s)
n=n//10
if sum==i:
print(sum)