NumPy攻略学习笔记(二)

本文详细介绍了如何使用NumPy进行高级索引,包括安装SciPy和PIL库,调整图像大小,创建视图和副本,翻转图像,使用布尔型索引等。通过实例展示了对著名图像Lena的处理,如调整大小、创建遮罩效果、对角线置零、随机排列等操作,以及在数独游戏和音频处理中应用NumPy的广播机制。
摘要由CSDN通过智能技术生成

第二章.高级索引和数组概念

NumPy以高效率的数组著称.这节我们将以图像处理为例展示高级的索引技巧.(摘自原文)


一.安装SciPy

SciPy是一个和NumPy密切相关的Python科学计算库.

$sudo apt-get install python-scipy

或者

$sudo easy_install scipy


二.安装PIL

PIL是Python的图像库.

$sudo apt-get install python-imaging

或者

$sudo easy_install PIL


三.调整图像大小

本节将把SciPy库中的一个实例图像Lena(一张人物图像,因为历史原因图像处理中经常会用到她的肖像)加载到数组中,本节不是讲讨论图像处理,我们只是将图像数据作为输入.我们将用repeat()函数调整该图像的大小.

具体步骤:

1.加载图像Lena到数组中

SciPy中有一个lena函数,可以用该函数把图像Lena加载到NumPy数组中.

lena=scipy.misc.lena()

SciPy的0.1之后的版本从勾重构了部分代码,现在的正确代码为:

lena=scipy.lena()

2.检查数组的形状

numpy.testing.assert_equal((LENA_X,LENA_Y),lena.shape)

LENA_X和LENA_Y是自己手动设置的图像的规格

3.调整数组Lena的大小

使用repeat()函数数组调整Lena的大小.需要分别在X,Y方向给出个调整系数.

resized=lena.repeat(yfactor,axis=0).repeeat(x.factor,axis=1)

xfactor和yfactor是自己手动设置的

4.绘制数组对应的图像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值