第二章.高级索引和数组概念
NumPy以高效率的数组著称.这节我们将以图像处理为例展示高级的索引技巧.(摘自原文)
一.安装SciPy
SciPy是一个和NumPy密切相关的Python科学计算库.
$sudo apt-get install python-scipy
或者
$sudo easy_install scipy
二.安装PIL
PIL是Python的图像库.
$sudo apt-get install python-imaging
或者
$sudo easy_install PIL
三.调整图像大小
本节将把SciPy库中的一个实例图像Lena(一张人物图像,因为历史原因图像处理中经常会用到她的肖像)加载到数组中,本节不是讲讨论图像处理,我们只是将图像数据作为输入.我们将用repeat()函数调整该图像的大小.
具体步骤:
1.加载图像Lena到数组中
SciPy中有一个lena函数,可以用该函数把图像Lena加载到NumPy数组中.
lena=scipy.misc.lena()
SciPy的0.1之后的版本从勾重构了部分代码,现在的正确代码为:
lena=scipy.lena()
2.检查数组的形状
numpy.testing.assert_equal((LENA_X,LENA_Y),lena.shape)
LENA_X和LENA_Y是自己手动设置的图像的规格
3.调整数组Lena的大小
使用repeat()函数数组调整Lena的大小.需要分别在X,Y方向给出个调整系数.
resized=lena.repeat(yfactor,axis=0).repeeat(x.factor,axis=1)
xfactor和yfactor是自己手动设置的
4.绘制数组对应的图像