动态规划(Dynamic Programming,以下简称dp)是算法设计学习中的一道槛,适用范围广,但不易掌握。
笔者也是一直不能很好地掌握dp的法门,于是这个寒假我系统地按着LRJ的《算法竞赛入门经典》来学习算法,对dp有了一个比过往都更系统\更深入的理解,并在这里写出来与大家分享。
笔者着重描述的是从穷举到dp的算法演进,并从中获取dp解法的思路,并给出多种思考的角度,务求解决的是LRJ提出的一种现象:
“每次碰到新题自己都想不出来,但一看题解就懂”的尴尬情况。
DP与穷举
大多讲dp的文章都是以0-1背包为基础来讲解的,笔者想换个花样,以另一道题“划分硬币”(UVa-562 Dividing coins)来讲述。
现在有一袋硬币,里面最多有100个硬币,面值区间为[1, 500],要分给两个人,并使得他们所获得的金钱总额之差最小,并给出这个最小差值。
这种问题笔者称之为二叉树选择问题。假设袋中有N个硬币,我们从最原始的枚举法来一步步优化。
我们让其中一个人先挑硬币,挑剩的就是给另外一个人的。第一个人对于每一个硬币,都有“选”和“不选”两种选择。我们很容易穷举他全部的情况——全部硬币的任意大小的子集,共 2N 种,并选取其中两人差值最小的解。
具体作法可以用递归法,二进制法等。在这里给出笔者的递归解法的代码,因为它与后面的优化紧密关联。
int solve_by_brute_force(vector<int> &v, int cur, int limit, int sofar, int sum) {
if (cur == limit) {
// the border of recursion
int other = sum - sofar;
return sofar>other? sofar-other : other-sofar;
}
// choose or not the current coin
int ans1 = solve_by_brute_force(v, cur+1, limit, sofar+v[cur], sum);
int ans2 = solve_by_brute_force(v, cur+1, limit, sofar, sum);
return ans1 < ans2? ans1 : ans2;
}
int main(){
int t;
cin >> t;
for (int nc= 0; nc<t; nc++) {
int m;
cin >> m;
vector<int> v(m);
int tot = 0;
for (int i= 0; i<m; i++) {
cin >> v[i];
tot += v[i];
}
int res = solve_by_brute_force(v, 0, m