对动态规划(Dynamic Programming)的理解:从穷举开始

本文探讨了动态规划(DP)的概念,通过从穷举的角度出发,阐述了如何从基本的穷举法逐步演化到DP解法。文章以"划分硬币"问题为例,展示了从二叉树选择问题到DP的转变,通过递归优化和采用二维数组记录中间结果降低复杂度。此外,还介绍了LCS问题和多阶段决策问题的DP思考过程,强调在寻找DP思路时要关注最优子结构和子问题的递推关系。
摘要由CSDN通过智能技术生成

动态规划Dynamic Programming,以下简称dp)是算法设计学习中的一道槛,适用范围广,但不易掌握。

笔者也是一直不能很好地掌握dp的法门,于是这个寒假我系统地按着LRJ的《算法竞赛入门经典》来学习算法,对dp有了一个比过往都更系统\更深入的理解,并在这里写出来与大家分享。

笔者着重描述的是从穷举到dp的算法演进,并从中获取dp解法的思路,并给出多种思考的角度,务求解决的是LRJ提出的一种现象:

“每次碰到新题自己都想不出来,但一看题解就懂”的尴尬情况。

DP与穷举

大多讲dp的文章都是以0-1背包为基础来讲解的,笔者想换个花样,以另一道题“划分硬币”(UVa-562 Dividing coins)来讲述。

现在有一袋硬币,里面最多有100个硬币,面值区间为[1, 500],要分给两个人,并使得他们所获得的金钱总额之差最小,并给出这个最小差值。

这种问题笔者称之为二叉树选择问题。假设袋中有N个硬币,我们从最原始的枚举法来一步步优化。

我们让其中一个人先挑硬币,挑剩的就是给另外一个人的。第一个人对于每一个硬币,都有“选”和“不选”两种选择。我们很容易穷举他全部的情况——全部硬币的任意大小的子集,共 2N 种,并选取其中两人差值最小的解。

具体作法可以用递归法,二进制法等。在这里给出笔者的递归解法的代码,因为它与后面的优化紧密关联。

int solve_by_brute_force(vector<int> &v, int cur, int limit, int sofar, int sum) {
     
    if (cur == limit) {
      // the border of recursion
        int other = sum - sofar;
        return sofar>other? sofar-other : other-sofar;
    }

    // choose or not the current coin
    int ans1 = solve_by_brute_force(v, cur+1, limit, sofar+v[cur], sum);
    int ans2 = solve_by_brute_force(v, cur+1, limit, sofar, sum);
    return ans1 < ans2? ans1 : ans2;
}

int main(){
     
    int t;
    cin >> t;
    for (int nc= 0; nc<t; nc++) {
     
        int m;
        cin >> m;
        vector<int> v(m);
        int tot = 0;
        for (int i= 0; i<m; i++) {
     
            cin >> v[i];
            tot += v[i];
        }
        int res = solve_by_brute_force(v, 0, m
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值