一.线性相关
- 定义:一定存在m个数k1,k2….km,使得k1a1+k2a2…+knan=0,若k1,k2….km只能全为0,则a1,a2…an线性无关,若k1,k2….km可以不全为0,则a1,a2…an线性相关
- 向量a1,a2…an组线性相关⇔ 至少存在一个向量可以由其余向量线性表示(谁的系数不为0,谁就可以被表示)
- 向量组a1,a2…an线性无关⇔ 任何一个向量都不可以由其余向量线性表示
- 一个向量构成的向量组线性相关⇔ 它是0向量(注:一个无关向量=一个非0向量)
- 两个向量构成的向量组线性相关⇔ 坐标成比例
- a1,a2…am线性相关⇔ r(a1,a2…am)<m
- a1,a2…an线性无关⇔ r(a1,a2…am)=m
m个m维向量组a1,a2…am线性相关⇔ |a1,a2,…am|=0
m个m维向量组a1,a2…am线性无关⇔ |a1,a2,…am|≠0