相似的性质与可相似对角化的条件

相似的性质:

  1. 只有方阵,才谈相似
  2. (定义):对于n阶方阵A,B,若存在可逆矩阵P,使P-1AP=B.则矩阵A与B相似,记作A~B.
  3. 若A~B,则

:f(A)~B (f(X)是多项式)

A的转置不能融合

tr(A)指该方阵主对角线之和

 

N阶方阵可相似对角化的条件

 充要条件:

         1.A恰有n个线性无关的特征向量

         2.对于A的每个k重特征值λ,都有k个无关的特征向量

         3.对于A的每个k重特征值λ,r(A-λE)=n-重数

        

充分条件:

  1. A有n个不同的特征值
  2. A是实对称矩阵
  3. f(A)=0,且f(A)因式分解后只有单因式:f(A)=(A+k1E)(A+k2E)….(A+kiE)(k1≠k2≠…ki)

  

 必要条件:

r(A)=A非0特征值的个数(相似对角化能推出什么)

常用结论:

  1. 幂0矩阵(Ak=0)可相似对角化⇔ A=0
  2. 若A的特征值只有k(n重),A可相似对角化⇔ A=kE
  3. 秩为1的矩阵可相似对角化⇔ tr(A)≠0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值