相似的性质:
- 只有方阵,才谈相似
- (定义):对于n阶方阵A,B,若存在可逆矩阵P,使P-1AP=B.则矩阵A与B相似,记作A~B.
- 若A~B,则
:f(A)~B (f(X)是多项式)
A的转置不能融合
tr(A)指该方阵主对角线之和
N阶方阵可相似对角化的条件
充要条件:
1.A恰有n个线性无关的特征向量
2.对于A的每个k重特征值λ,都有k个无关的特征向量
3.对于A的每个k重特征值λ,r(A-λE)=n-重数
充分条件:
- A有n个不同的特征值
- A是实对称矩阵
- f(A)=0,且f(A)因式分解后只有单因式:f(A)=(A+k1E)(A+k2E)….(A+kiE)(k1≠k2≠…ki)
必要条件:
r(A)=A非0特征值的个数(相似对角化能推出什么)
常用结论:
- 幂0矩阵(Ak=0)可相似对角化⇔ A=0
- 若A的特征值只有k(n重),A可相似对角化⇔ A=kE
- 秩为1的矩阵可相似对角化⇔ tr(A)≠0
、