实对称矩阵:
矩阵元素都为实数,且
总结:
1.不同特征值对应特征向量正交 正交→ 线性无关
2.必能相似对角化,且存在正交矩阵Q,使(注:非对称阵一定不能通过正交矩阵Q相似对角化)
3.k重特征值恰有k个无关的特征向量
4.非0特征值个数等于矩阵的秩
5.适用谱分解定理
6.也为实对称矩阵
7.任意m*n阶矩阵C,一定是实对称矩阵
若只剩下一个特征值(不管几重),求特征向量,与其他特征向量正交的向量,一定全是这个特征值的特征向量
例:
谱分解定理:
若A为实对称矩阵,存在Q=(γ1,γ2,γ3)使Q-1AQ=^(对角阵),
注:
详情参考小吴学长660 325~327