实对称矩阵的性质(求特征值和特征向量)(重要)

实对称矩阵:

矩阵元素都为实数,且

总结:

1.不同特征值对应特征向量正交   正交→ 线性无关

2.必能相似对角化,且存在正交矩阵Q,使(注:非对称阵一定不能通过正交矩阵Q相似对角化)

3.k重特征值恰有k个无关的特征向量

4.非0特征值个数等于矩阵的秩

5.适用谱分解定理

6.也为实对称矩阵

7.任意m*n阶矩阵C,一定是实对称矩阵

若只剩下一个特征值(不管几重),求特征向量,与其他特征向量正交的向量,一定全是这个特征值的特征向量

例:

谱分解定理:

若A为实对称矩阵,存在Q=(γ1,γ2,γ3)使Q-1AQ=^(对角阵),

注:

详情参考小吴学长660 325~327

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值