梯度法(SGD)、拟牛顿法(LBFGS)与共轭梯度法(CG)

本文对比了SGD、LBFGS和CG三种优化算法在深度学习中的性能。SGD实现简单,但需要手动调参,LBFGS在低维参数时效果好,CG适合高维问题。实验表明,LBFGS和CG在GPU上优化速度快,而大minibatch的SGD性能提升。在Autoencoder和Sparse autoencoder模型中,SGD的表现通常较差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本原理

梯度法:

一阶泰勒级数展开式,f(x+dx) = f(x) + sum(i,df/dx(i)*dx(i)) + r(x,dx)。其中r(x,dx)为余项,当dx很小时,可忽略余项。推倒得迭代:x=x+dx=x-miu*dfx。

优点:可收敛于一个极小值点。

缺点:收敛速度慢,在梯度值小时尤为明显。学习率miu需要依据经验赋值。

牛顿法:

         由二阶泰勒级数展开式,f(x+dx) ~= f(x) + f’(x)*dx + 1/2*(dx)’H(dx),H为黑森矩阵。推到的迭代式:dx=-H[-1]df/dx。

         优点:精度高于梯度法。

         缺点:H矩阵计算存储复杂,收敛性没法保证。

         拟牛顿法:利用函数一阶导数(梯度)来近似递推H矩阵。

共轭梯度法:

         共轭梯度法也是一种近似的二阶方法,只需计算一阶导数,不需计算和存储二阶导数。

二、三者性能比较(引自网络)

本文主要是参考论文:On optimization methods fordeep learning,文章内容主要是笔记SGD(随机梯度下降),LBFGS(受限的BFGS),CG(共轭梯度法)三种常见优化算法的在deeplearning体系中的性能。下面是一些读完的笔记。<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值