N皇后问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 21770 Accepted Submission(s): 9741
Problem Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1
8
5
0
Sample Output
1
92
10
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2553
题解
dfs回溯。由于每行每列每斜线都不能有其它皇后放置,所以固定每行放一个,这样只需要考虑列和斜线有多少种排列。用数组vis[3][maxn]记录是否遍历过该状态,vis[0]代表同一列,vis[cnt+i]代表135°斜线,vis[cnt-i+n]代表45°斜线,+n能保证数组下标>0。
注意:直接这么写会超时,可以打表
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <stack>
#include <queue>
#include <vector>
#define INF 0xffffffff
using namespace std;
const int maxn = 15;
int vis[3][4*maxn];
int n;
int tot;
void search(int cur){
if(cur == n){
tot ++;
}
else{
for(int i=0; i<n ;i++){
if(!vis[0][i] && !vis[1][cur+i] && !vis[2][cur-i+n]){
vis[0][i] = 1; vis[1][cur+i] = 1; vis[2][cur-i+n] = 1;
search(cur+1);
vis[0][i] = 0; vis[1][cur+i] = 0; vis[2][cur-i+n] = 0;
}
}
}
}
int main(){
// for(n=0; n<=10; n++){
// memset(vis, 0, sizeof(vis));
// tot = 0;
// search(0);
// printf("%d\n", tot);
// }
int a[] = {0,1,0,0,2,10,4,40,92,352,724};
while(scanf("%d", &n) == 1 && n){
printf("%d\n", a[n]);
}
return 0;
}