1.最大公约数 ——辗转相除法
原理:求gcd(a, b),设 a = p * b + q,所以gcd(b, q) 既整除a,又整除b。故gcd(a, b) = gcd(b, a % b) = … = gcd(c, 0) = c
时间复杂度:O(log max(a, b) )
int gcd(int a, int b){
if(b == 0) return a;
return gcd(b, a % b);
}
2.扩展欧几里得算法
首先证明定理:ax + by = 1是 a, b互质的充要条件,其为裴蜀定理的推论
参考:https://www.cnblogs.com/tekkaman/p/3732098.html
充分性:设gcd(a, b) = c,则a % c = 0, b % c = 0, 故(ax+by) % c = 0
即1 % c = 0,c = 1,故 gcd(a, b) = 1, a,b互质
必要性:(证明没看懂,日后在看)
假设已经求得bx’+(a%b)y’ = gcd(a,b),a%b = a - (a/b) * b,当b=0时,有a*1+b*0 = a = gcd(a, b)
int exgcd(int a, int b, int &x, int &y){
int d = a;
if(b != 0){
d = exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = 1, y = 0;
return d;
}
关于ax+by=gcd(a,b)的解的大小
|x| = |x’| <= b, |y| = |y’-(a/b)x’| <= |y’|+(a/b)|x’| <= a%b+(a/b)*b = a
3.关于素数的基础算法
1) 素性测试O(n^1/2)
bool is_prime(int n){
for(int i = 2; i * i <= n; i++)
if(n % i == 0) return false;
return n != 1;
}
2)埃氏筛法(素数筛) O(nloglogn) ≈ O(n)
算法描述:从1开始,每次筛去剩下数的倍数,最后剩下的都是素数。
int prime[maxn]; //第i个素数
bool is_prime[maxn]; //第i个数是否为素数
void Prime(int n){
fill(is_prime, is_prime+n, 1);
is_prime[0] = is_prime[1] = 0;
int t = 0;
for(int i = 2; i <= n; i++){
if(is_prime[i]){
prime[t++] = i;
for(int j = i + i; j <= n; j += i)
is_prime[j] = 0;
}
}
}
3)区间筛法
求区间 [a,b) 内有多少个素数
先求 [2, b^1/2)的素数,再用这些素数筛掉[a, b),就可求得 [a, b)中的素数
bool is_prime[maxn];
bool is_prime_small[maxn_b];
void segment_sieve(int a, int b){
for(int i = 0; i * i < b; i++) is_prime_small[i] = 1;
for(int i = 0; i < b - a; i++) is_prime[i] = 1;
for(int i = 2; i * i < b; i++){
if(is_prime_small[i]){
for(int j = 2 * i; j * j < b; j += i)
is_prime_small[j] = 0;
for(j = max(2, (a = i - 1) / i) * i); j < b; j += i)
is_prime[j - a] = 0;
}
}
}
4)欧拉筛O(n)
算法原理:保证每个数只会被它的最小素因子筛掉,在数字范围很大时很快
int prime[maxn]; //第i个素数
bool is_prime[maxn]; //第i个数是否为素数
int Prime(int n){
fill(is_prime, is_prime+n, 1);
is_prime[0] = is_prime[1] = 0;
int t = 0;
for(int i = 2; i <= n; i++){
if(is_prime[i]){ //不是目前找到的素数的倍数
prime[t++] = i;
for(int j = 1; i*prime[j] <= n; j++){
is_prime[i*prime[j]] = 0; //找到的素数的素数倍不访问
if(i % prime[j] == 0) break; //已经找到最小质因子
}
}
}
return t;
}
4.模运算
基本的模运算率
同余公式也有许多我们常见的定律结合律,交换律,传递律….如下面的表示:
- 相等率 a≡a(mod d)
- 对称性 a≡b(mod d)→b≡a(mod d)
- 传递性 (a≡b(mod d),b≡c(mod d))→a≡c(mod d)
- 如果a≡x(mod d),b≡m(mod d),则
- a+b≡x+m (mod d)
- a -b≡x- m (mod d)
- a* b≡x* m (mod d )
- a/ b≡x/ m (mod d)
- a≡b(mod d)则a-b整除d
- a≡b(mod d)则a^n≡b^n(mod d)
- 如果ac≡bc(mod m),且c和m互质,则a≡b(mod m)
5.快速幂运算 —— 反复平方法O(logn)
ll mod_pow(ll x, ll n){
ll res = 1;
while(n > 0){
if(n & 1) res = res * x % mod;//如果二进制最低位为1,则乘上x^(2^i)
x = x * x % mod; //将x平方
n >> 1;
}
return res;
}