裴蜀定理的证明

若两个非零整数 a,b 互质的充要条件是存在aX+bY=1(X*Y≠0,X,Y∈Z)。

充分性证明:

                    不妨设 a>0 , b>0 , a≠b;

                     ∵a , b两个数互质

                      ∴a , b两数的最小公倍数是两个数的乘积为a*b;

                    分两种情况充分证明:

                    情况1:当a>b>1时,只需证明

                                                                       a÷b = p1...1,

                                                                        2a÷b = p2...1,

                                                                        .......................,

                                                                        b*a÷b = pb...1。

这b个式子中的其中一个成立即可完成证明;

显然前b-1次都是有余数的,第b次余数是0;因为两个互质数的最小公倍数是两个数的乘积;

反证法:

             假设这b个式子中有其中两个余数是相同的。

             不妨设 ua ÷ b = pu ...r ,va ÷ b = pv ...r;(u≠v)

              显然有 | pu - pv | *b 能被a整除;

              又∵   | pu - pv | 的最大值为b - 1;

               ∴ | pu - pv | *b < a*b ,这与a , b两数的最小公倍数是a*b产生矛盾;

             故而假设不成立;

            ∴这b个式子中的余数是不同的因此余数的集合为{0 ,1 ,2 ,.....,b-1};

             这就完成了证明。

情况2:

           当 a>0 ,b>0,a<b时;

          只需证明  a ÷ b = p1 ... 1,

                           2a ÷ b = p2 ... 1,

                          ...........................

                          b*a ÷ b = pb ... 1,

这b个式子中有一个成立即可,

不妨设  ua ÷ b = pu ...ru ,va ÷ b = pv ...rv;(u≠v) 

情况1:当 pu=pv时,显然两个式子的余数之差的绝对值最小值为 a

              ∴当pu=pv时余数是不相等的;

情况2当pu≠pv时:

反证法:

假设ua ÷ b = pu ...ru ,va ÷ b = pv ...rv;(u≠v)  其中ru=rv,

显然| pu - pv | *b 能被a整除,这与a,b两数的最小公倍为a*b产生矛盾;

故而推导出 商 不同余数也不相同;

从而这b个式子中余数的集合为{0,1,2....,b-1} 这b个不同的余数。

也同样完成证明。

 

必要性证明:

       用反证法:

若存在aX+bY = 1(X*Y≠0 X,Y∈Z),则a,b两个数互质。

假设a,b两个数不互质有公约数d>1;

令 a= ud , b=vd;

显然X*ud+Y*vd总能被d整除,显然aX+bY≠1;

这与aX+bY=1产生矛盾,所以a ,b两个数是互质的。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值