XGBoost论文翻译------ XGBoost: A Scalable Tree Boosting System


作者:
Tianqi Chen University of Washington tqchen@cs.washington.edu;
Carlos Guestrin University of Washington guestrin@cs.washington.edu

摘要
提升树是非常有效且广泛应用于机器学习的方法. 在这篇论文中, 我们描述了可扩展的,端到端的提升树系统,叫做XGBoost. 在很多机器学习的挑战中,数据科学家经常使用该系统实现卓越的效果. 我们提出了一个针对稀疏数据的新颖方法----稀疏感知和加权的分位近似树. 更重要的, 我们提出了一些有效的方法来实现缓存, 数据压缩, 分片构建提升树系统. 综合了这些有效的特点, 在数据规模超过10亿的情况下, XGBoost要比当前的其它系统使用少得多的资源.

关键词
大规模 机器学习

1. 介绍


(未完, 待续...)

阅读更多
文章标签: 机器学习
个人分类: 机器学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭