【无标题】

Domain Adaptation李宏毅课程学习笔记

首先是需要进行Domain Adaptation的情景。若目标域存在大量有标签样本,则直接使用目标域数据进行训练即可,不需要进行Domain Adaptation(这种场景的模型准确率可以作为Domain Adaptation)的上限。若目标域存在少量标签样本,这种情况下可以对源域数据进行训练,再使用少量目标域的有标签样本进行模型微调。但是这种情况下,由于目标域数据量较小,需要小心overfitting的问题。当目标域上存在大量无标签样本时,可以使用Domain Adaptation的方法。

Basic Idea

构建一个可以提取域不变特征的Feature Extractor。
在这里插入图片描述
如何找出这样的Feature Extractor呢?将一个Classfier模型分为两个部分,分别是Feature Extractor和Label Precditor。如何训练Feature Extracotr和Label Predictor呢?
在这里插入图片描述
仅针对源域数据而言,训练过程与一般的训练Classfier的过程一致,但是我们不能期待将目标域的数据直接放进这个Classifier中,就可以获得一个理想的标签。这里关注的点是Feature Extractor提取的嵌入特征,图片里将源域数据的嵌入特征标注为蓝色,目标域数据的嵌入特征标注为红色。我们的目标是在经过Feature Extractor后,蓝色的点和红色的点分不出差异。这里提到的第一种方法就是Domain Adaversarial Training(域对抗训练)。
Domain Adversarial Training
Domian Adversarial Training的核心思想是训练一个Domain Classifier(域判别器),Domain Classifier的输入是Feature Extractor提取的嵌入特征,其本质是一个二元分类器,判断输入的向量是来自源域还是目标域。而Feature Extractor的目标是尽量骗过Domain Classifier(类似于GAN)。二者形成一种对抗关系。这里李宏毅老师提出了一个问题,在这种对抗关系中,Feature Extractor的优势可以说是很大的,不管输入的是来自源域还是目标域的数据,Feature Extractor只要输出一个0向量,Domain Classifier就永远无法分辨嵌入特征是来自源域还是目标域。这种情况其实是不会发生的,因为原始模型中的Label Predictor也需要Feature Extractor提取的嵌入特征进行分类判别。
在这里插入图片描述
这里给出了符号化的解释:
在这里插入图片描述
假设Feature Extractor(相当于GAN中的Generator)中的所有参数是θf,Label Predictor中的所有参数是θp,Domain Classifier中的所有参数是θd。源域数据(有标签)的交叉熵损失是L,Domain Classifier的损失是Ld。这里,我们需要找到最合适的θp,使得源域数据分类损失L越小越好;找到合适的θd,使得Domain Classifier的损失越小越好。而Feature Extractor的目标与Label Predictor一致,与Domain Classfier相反,因此需要找到最合适的θf,使得L-Ld越小越好。
这里其实存在一定的思考空间,我们知道,Feature Extractor的目标是在提升源域数据的分类准确率,同时使得源域数据和目标域数据难以分辨,但是单纯地在Ld前加符号,他的目标就可以理解为:将源域数据判别为目标域数据,而将目标域数据判别为源域,这样其实在另一种程度上实现了源域和目标域的判别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值