∵ A 是 实 对 称 矩 阵 , ∴ 存 在 正 交 阵 P , 使 P − 1 A P = Λ = ( λ 1         λ 2         ⋱         λ n ) ⇒ A = P Λ P − 1 ∵ A 正 定 , ∴ λ 1 , λ 2 , . . . , λ n 全 是 正 数 , 令 Λ 1 = ( λ 1         λ 2         ⋱         λ n ) , B = P Λ 1 P − 1 则 B 正 定 , 且 有 B 2 = B B = P Λ 1 P − 1 P Λ 1 P − 1 = P Λ 1 2 P − 1 = P Λ P − 1 = A 以 上 内 容 编 辑 : 尹 蓓 \because A是实对称矩阵,\therefore 存在正交阵P,使\\ P^{-1}AP=\Lambda=\left( \begin{array}{cccc} \lambda_1&\, &\, &\,\\ \, & \lambda_2&\, &\, \\ \, &\,&\ddots &\, \\ \, &\,& \, &\lambda_n \\ \end{array} \right)\Rightarrow A= P\Lambda P^{-1}\\ \because A正定,\therefore \lambda_1,\lambda_2,...,\lambda_n全是正数,令\\ \Lambda_1 =\left( \begin{array}{cccc} \sqrt{\lambda_1}&\, &\, &\,\\ \, & \sqrt{\lambda_2}&\, &\, \\ \, &\,&\ddots &\, \\ \, &\,& \, &\sqrt{\lambda_n}\\ \end{array} \right),B=P\Lambda_1P^{-1}\\ 则B正定,且有B^2=BB=P\Lambda_1P^{-1}P\Lambda_1P^{-1}\\=P\Lambda_1^2 P^{-1}=P\Lambda P^{-1}=A\\ 以上内容编辑:尹蓓 ∵
实对称正定矩阵存在平方根的证明
最新推荐文章于 2024-09-18 10:37:43 发布
本文详细证明了实对称正定矩阵存在平方根这一数学事实。通过利用实对称矩阵可对角化以及其特征值全为正的性质,构造了一种正定矩阵B,使得B的平方等于原矩阵A,从而证明了A存在正定平方根。
摘要由CSDN通过智能技术生成