主成分分析(PCA)原理及推导

主成分分析(PCA)原理及推导

转载请声明出处http://blog.csdn.net/zhongkejingwang/article/details/42264479

什么是PCA?

在数据挖掘或者图像处理等领域经常会用到主成分分析,这样做的好处是使要分析的数据的维度降低了,但是数据的主要信息还能保留下来,并且,这些变换后的维两两不相关!至于为什么?那就接着往下看。在本文中,将会很详细的解答这些问题:PCA、SVD、特征值、奇异值、特征向量这些关键词是怎么联系到一起的?又是如何在一个矩阵上体现出来?它们如何决定着一个矩阵的性质?能不能用一种直观又容易理解的方式描述出来?

数据降维

为了说明什么是数据的主成分,先从数据降维说起。数据降维是怎么回事儿?假设三维空间中有一系列点,这些点分布在一个过原点的斜面上,如果你用自然坐标系x,y,z这三个轴来表示这组数据的话,需要使用三个维度,而事实上,这些点的分布仅仅是在一个二维的平面上,那么,问题出在哪里?如果你再仔细想想,能不能把x,y,z坐标系旋转一下,使数据所在平面与x,y平面重合?这就对了!如果把旋转后的坐标系记为x’,y’,z’,那么这组数据的表示只用x’和y’两个维度表示即可!当然了,如果想恢复原来的表示方式,那就得把这两个坐标之间的变换矩阵存下来。这样就能把数据维度降下来了!但是,我们要看到这个过程的本质,如果把这些数据按行或者按列排成一个矩阵,那么这个矩阵的秩就是2!这些数据之间是有相关性的,这些数据构成的过原点的向量的最大线性无关组包含2个向量,这就是为什么一开始就假设平面过原点的原因!那么如果平面不过原点呢?这就是数据中心化的缘故!将坐标原点平移到数据中心,这样原本不相关的数据在这个新坐标系中就有相关性了!有趣的是,三点一定共面,也就是说三维空间中任意三点中心化后都是线性相关的,一般来讲n维空间中的n个点一定能在一个n-1维子空间中分析!所以,不要说数据不相关,那是因为坐标没选对!
上面这个例子里把数据降维后并没有丢弃任何东西,因为这些数据在平面以外的第三个维度的分量都为0。现在,我假设这些数据在z’轴有一个很小的抖动,那么我们仍然用上述的二维表示这些数据,理由是我认为这两个轴的信息是数据的主成分,而这些信息对于我们的分析已经足够了,z’轴上的抖动很有可能是噪声,也就是说本来这组数据是有相关性的,噪声的引入,导致了数据不完全相关,但是,这些数据在z’轴上的分布与原点构成的夹角非常小,也就是说在z’轴上有很大的相关性,综合这些考虑,就可以认为数据在x’,y’轴上的投影构成了数据的主成分!
现在,关于什么是数据的主成分已经很好的回答了。下面来看一个更具体的例子。
下面是一些学生的成绩:

学生语文数学物理化学
19014099100
2909089100
39010079100
…………………………

首先,假设这些科目成绩不相关,也就是说某一科考多少份与其他科没有关系。那么一眼就能看出来,数学、物理、化学这三门成绩构成了这组数据的主成分(很显然,数学作为第一主成分,因为数学成绩拉的最开)。为什么一眼能看出来?因为坐标轴选对了!下面再看一组数据,还能不能一眼看出来:

学生代码数学物理化学语文历史英语
1656172848179
2777776647055
3676349656757
4806975747463
5747080848174
6788475627164
7667167526557
8777157728671
98310079416750
……………………………………

是不是有点凌乱了?你还能看出来数据的主成分吗?显然不能,因为在这坐标系下数据分布很散乱。所以说,看到事物的表象而看不到其本质,是因为看的角度有问题!如果把这些数据在空间中画出来,也许你一眼就能看出来。但是,对于高维数据,能想象其分布吗?就算能描述分布,如何精确地找到这些主成分的轴?如何衡量你提取的主成分到底占了整个数据的多少信息?要回答这些问题,需要将上面的分析上升到理论层面。接下来就是PCA的理论分析。

PCA推导

以下面这幅图开始我们的推导:
在这里插入图片描述
上面是二维空间中的一组数据,很明显,数据的分布让我们很容易就能看出来主成分的轴(简称主轴)的大致方向。下面的问题就是如何通过数学计算找出主轴的方向。来看这张图:
在这里插入图片描述
现在要做的事情就是寻找u1的方向,对于这点,我想好多人都有经验,这不就是以前用最小二乘法拟合数据时做的事情吗!对,最小二乘法求出来的直线(二维)的方向就是u1的方向!那u2的方向呢?因为这里是二维情况,所以u2方向就是跟u1垂直的方向,对于高维数据,怎么知道u2的方向?经过下面的理论推导,各个主轴都能确定下来。

给定一组数据:(如无说明,以下推导中出现的向量都是默认是列向量)

z 1 ⃗ , z 2 ⃗ , z 3 ⃗ , ⋯   , z n ⃗ {\vec{z_1},\vec{z_2},\vec{z_3},\cdots,\vec{z_n}} z1 ,z2 ,z3 ,,zn

将其中心化后表示为:

x 1 ⃗ , x 2 ⃗ , x 3 ⃗ , ⋯   , x n ⃗ , = z 1 ⃗ − μ ⃗ , z 2 ⃗ − μ ⃗ , ⋯   , z n ⃗ − μ ⃗ {\vec{x_1},\vec{x_2},\vec{x_3},\cdots,\vec{x_n},} = {\vec{z_1}-\vec{\mu},\vec{z_2}-\vec{\mu},\cdots,\vec{z_n}-\vec{\mu}} x1 ,x2 ,x3 ,,xn ,=z1 μ ,z2 μ ,,zn μ

μ ⃗ = 1 n ∑ i = 1 n z i ⃗ \vec{\mu} =\frac{1}{n}\sum_{i=1}^n \vec{z_i} μ =n1i=1nzi

中心化后的数据在第一主轴u1方向上分布散的最开,也就是说在u1方向上的投影的绝对值之和最大(也可以说方差最大),计算投影的方法就是将x与u1做内积,由于只需要求u1的方向,所以设u1是单位向量。

也就是最大化下式:

1 n ∑ i = 1 n z i ⃗ \frac{1}{n}\sum_{i=1}^n \vec{z_i} n1i=1nzi

也就是最大化下式:

1 n ∑ i = 1 n ∣ x i ⃗ ⋅ μ 1 ⃗ ∣ \frac{1}{n}\sum_{i=1}^n |\vec{x_i}\cdot\vec{\mu_1}| n1i=1nxi μ1

即最大化:

1 n ∑ i = 1 n ∣ x i ⃗ ⋅ μ 1 ⃗ ∣ 2 = 1 n ∑ i = 1 n ( x i ⃗ ⋅ μ 1 ⃗ ) 2 \frac{1}{n}\sum_{i=1}^n |\vec{x_i}\cdot\vec{\mu_1}|^2=\frac{1}{n}\sum_{i=1}^n (\vec{x_i}\cdot\vec{\mu_1})^2 n1i=1nxi μ1 2=n1i=1n(xi μ1 )2

解释:平方可以把绝对值符号拿掉,光滑曲线处理起来方便。

两个向量做内积可以转化成矩阵乘法:

x i ⃗ ⋅ μ 1 ⃗ = x i T u 1 \vec{x_i}\cdot\vec{\mu_1}=x_i^Tu_1 xi μ1 =xiTu1

所以目标函数可以表示为:

1 n ∑ i = 1 n ( x i T u 1 ) 2 \frac{1}{n}\sum_{i=1}^n(x_i^Tu_1)^2 n1i=1n(xiTu1)2

括号里面就是矩阵乘法表示内积,转置以后的行向量乘以列向量得到一个数。因为一个数的转置还是其本身,所以又可以将目标函数化为:

1 n ∑ i = 1 n ( x i T u 1 ) T ( x i T u 1 ) \frac{1}{n}\sum_{i=1}^n(x_i^Tu_1)^T(x_i^Tu_1) n1i=1n(xiTu1)T(xiTu1)

这样就可以把括号去掉!去掉以后变成:

1 n ∑ i = 1 n ( u 1 T x i ) T x i T u 1 \frac{1}{n}\sum_{i=1}^n(u_1^Tx_i)^Tx_i^Tu_1 n1i=1n(u1Txi)TxiTu1

由于u1和i无关,可以把它拿到求和符外面:

1 n u 1 T ( ∑ i = 1 n ( x i x i T ) u 1 \frac{1}{n} u_1^T(\sum_{i=1}^n(x_ix_i^T)u_1 n1u1T(i=1n(xixiT)u1

注意,其实括号里面是一个矩阵乘以自身的转置,这个矩阵形式如下:
X = [ x 1 x 2 ⋯ x n ] X = [x_1\quad x_2 \quad \cdots \quad x_n] X=[x1x2xn]

X T = [ x 1 T x 2 T ⋮ x n T ] X^T= \left[ \begin{matrix} \quad x_1^T \quad \\ \quad x_2^T \quad\\ \quad \vdots \quad \\ \quad x_n^T\quad \end{matrix} \right] XT=x1Tx2TxnT
X矩阵的第i列就是xi,于是有:

X X T = ∑ i = 1 n x i x i T XX^T= \sum_{i=1}^nx_ix_i^T XXT=i=1nxixiT

所以目标函数最后化为:

1 n u 1 T X X T u 1 \frac{1}{n}u_1^TXX^Tu_1 n1u1TXXTu1

上式到底有没有最大值呢?如果没有前面的1/n,那就是就是一个标准的二次型!并且XX’(为了方便,用’表示转置)得到的矩阵是一个半正定的对称阵!为什么?首先XX’是对称阵,因为(XX’)’=XX’,下面证明它是半正定,什么是半正定?就是所有特征值大于等于0。
假设XX’的某一个特征值为 λ \lambda λ,对应的特征向量为 ξ \xi ξ,则有:
X X T ξ = λ ξ XX^T\xi = \lambda\xi XXTξ=λξ

( X X T ξ ) T ξ = ( λ ξ ) T ξ (XX^T\xi)^T\xi= (\lambda\xi)^T\xi (XXTξ)Tξ=(λξ)Tξ

ξ T X X T ξ = λ ξ T ξ \xi^TXX^T\xi = \lambda\xi^T\xi ξTXXTξ=λξTξ

ξ T X X T ξ = ( X T ξ ) T ( X T ξ ) = ∣ ∣ X T ξ ∣ ∣ 2 = λ ξ T ξ = ∣ ∣ ξ ∣ ∣ 2 ∣ ∣ X T ξ ∣ ∣ 2 = λ ∣ ∣ ξ ∣ ∣ 2 → λ ≥ 0 \xi^TXX^T\xi = (X^T\xi)^T(X^T\xi) = ||X^T\xi||^2= \lambda\xi^T\xi = ||\xi||^2||X^T\xi||^2=\lambda||\xi^||^2\rightarrow\lambda\ge0 ξTXXTξ=(XTξ)T(XTξ)=XTξ2=λξTξ=ξ2XTξ2=λξ2λ0
证明完毕!对于半正定阵的二次型,存在最大值!现在问题就是如何求目标函数的最大值?以及取最大值时u1的方向?下面介绍两种方法。

方法一 拉格朗日乘数法

目标函数和约束条件构成了一个最大化问题:

{ m a x { u 1 T X X T u 1 } u 1 T u 1 = 1 \begin{cases} max\{{u_1^TXX^Tu_1} \}\\ \quad u_1^Tu_1=1\\ \end{cases} {max{u1TXXTu1}u1Tu1=1
构造拉格朗日函数:

f ( u 1 ) = u 1 T X X T u 1 + λ ( 1 − u 1 T u 1 ) f(u_1) = u_1^TXX^Tu_1 + \lambda(1 - u_1^Tu_1) f(u1)=u1TXXTu1+λ(1u1Tu1)

对u1求导

∂ f ∂ u 1 = 2 X X T u 1 − 2 λ u 1 = 0 → X X T u 1 = λ u 1 \frac{\partial f}{\partial u_1} =2XX^Tu_1-2\lambda u_1 = 0\rightarrow XX^Tu_1=\lambda u_1 u1f=2XXTu12λu1=0XXTu1=λu1

显然,u1即为XX’特征值对应的特征向量!XX’的所有特征值和特征向量都满足上式,那么将上式代入目标函数表达式即可得到

u 1 T X X T u 1 = λ u 1 T u 1 = λ u_1^TXX^Tu_1 = \lambda u_1^Tu_1= \lambda u1TXXTu1=λu1Tu1=λ

所以,如果取最大的那个特征值,那么得到的目标值就最大。有可能你会有疑问,为什么一阶导数为0就是极大值呢?那么再求二阶导数:

∂ 2 f ∂ u 1 = 2 ( X X T − λ I ) , 当 λ 取 X X T 最 大 特 征 值 λ 1 时 X X T − λ 1 I 为 半 负 定 阵 \frac{\partial ^2f}{\partial u_1} = 2(XX^T-\lambda I),当 \lambda取XX^T最大特征值\lambda_1时XX^T-\lambda_1I为半负定阵 u12f=2(XXTλI)λXXTλ1XXTλ1I
二阶导数半负定,所以,目标函数在最大特征值所对应的特征向量上取得最大值!所以,第一主轴方向即为第一大特征值对应的特征向量方向。第二主轴方向为第二大特征值对应的特征向量方向,以此类推,证明类似。

下面介绍第二种方法

方法二 奇异值法

这方法是从矩阵分析里面总结的,随便取个名叫奇异值法。

首先,对于向量x,其二范数(也就是模长)的平方为:

∣ ∣ x ∣ ∣ 2 2 = &lt; x , x &gt; = x T x ||x||_2^2 = &lt;x,x&gt;=x^Tx x22=<x,x>=xTx

所以有:

u 1 T X X T u 1 = ( X T u 1 ) T ( X T u 1 ) = &lt; X T u 1 , X T u 1 &gt; = ∣ ∣ X T u 1 ∣ ∣ 2 2 u_1^TXX^Tu_1 = (X^Tu_1)^T(X^Tu_1)= &lt; X^Tu_1,X^Tu_1&gt; = ||X^Tu_1||_2^2 u1TXXTu1=(XTu1)T(XTu1)=<XTu1,XTu1>=XTu122

把二次型化成一个范数的形式,最大化上式也即这个问题:对于一个矩阵,它对一个向量做变换,变换前后的向量的模长伸缩尺度如何才能最大?这个很有趣,简直就是把矩阵的真面目给暴露出来了。为了给出解答,下面引入矩阵分析中的一个定理:

∣ ∣ A x ∣ ∣ ∣ ∣ x ∣ ∣ ≤ σ 1 ( A ) = ∣ ∣ A ∣ ∣ 2 \frac{||Ax||}{||x||}\leq\sigma_1(A)=||A||^2 xAxσ1(A)=A2

σ 1 ( A ) \sigma_1(A) σ1(A)示矩阵A的最大奇异值!一个矩阵A的奇异值为AA’(或A’A)的特征值开平方,前面讲过AA’的特征值都大于等于0。当x为单位向量时,上式就是我们的目标函数表达式。然而,上式只是告诉我们能取到最大值是多少,并没有说取到最大值时x的方向,要想知道取到最大值时的方向,那就来证明这个定理吧!

考察对称阵

A T A ϵ C n × n A^TA\epsilon C^{n\times n} ATAϵCn×n

λ 1 ≥ λ 2 ≥ ⋯ ≥ λ n ≥ 0 \lambda_1\ge\lambda_2\ge\cdots\ge\lambda_n\ge0 λ1λ2λn0

为其n个特征值,并令与之对应的单位特征向量为:

ξ 1 , ξ 2 , ξ 3 , ⋯ &ThinSpace; , ξ n \xi_1,\xi_2,\xi_3,\cdots,\xi_n ξ1,ξ2,ξ3,,ξn

对了,忘了提醒,对称阵不同特征值对应的特征向量两两正交!这组特征向量构成了空间中的一组单位正交基。

任意取一个向量x,将其表示为

x = ∑ i = 1 n α i ξ i x = \sum_{i=1}^n\alpha_i\xi_i x=i=1nαiξi


∣ ∣ x ∣ ∣ 2 2 = &lt; x , x &gt; = α 1 2 + ⋯ + α n 2 ||x||_2^2=&lt;x,x&gt;=\alpha_1^2+\cdots+\alpha_n^2 x22=<x,x>=α12++αn2

∣ ∣ A x ∣ ∣ 2 2 = &lt; A x , A x &gt; = ( A x ) T A x = x T A T A x = &lt; x , A T A x &gt; ||Ax||_2^2=&lt;Ax,Ax&gt;=(Ax)^TAx=x^TA^TAx=&lt;x,A^TAx&gt; Ax22=<Ax,Ax>=(Ax)TAx=xTATAx=<x,ATAx>

将代入上式可得
&lt; x , A T A x &gt; = &lt; α 1 ξ 1 + ⋯ + α n ξ n , α 1 A T A ξ 1 + ⋯ + α n A T A ξ n &gt; &lt;x, A^TAx&gt;=&lt;\alpha_1\xi_1+\cdots+\alpha_n\xi_n,\alpha_1A^TA\xi_1+\cdots+\alpha_nA^TA\xi_n&gt; <x,ATAx>=<α1ξ1++αnξn,α1ATAξ1++αnATAξn>
= &lt; α 1 ξ 1 + ⋯ + α n ξ n , λ 1 α 1 ξ 1 + ⋯ + λ 1 α 1 ξ n &gt; \quad\quad\quad\quad\quad\quad=&lt;\alpha_1\xi_1+\cdots+\alpha_n\xi_n,\lambda_1\alpha_1\xi_1+\cdots+\lambda_1\alpha_1\xi_n&gt; =<α1ξ1++αnξn,λ1α1ξ1++λ1α1ξn>

由于这些单位特征向量两两正交,只有相同的做内积为1,不同的做内积为0.所以上式做内积出来的结果为:

&lt; α 1 ξ 1 + ⋯ + α n ξ n , λ 1 α 1 ξ 1 + ⋯ + λ n α n ξ n &gt; = λ 1 α 1 2 + ⋯ + λ n α n 2 &lt;\alpha_1\xi_1+\cdots+\alpha_n\xi_n,\lambda_1\alpha_1\xi_1+\cdots+\lambda_n\alpha_n\xi_n&gt;=\lambda_1\alpha_1^2+\cdots+\lambda_n\alpha_n^2 <α1ξ1++αnξn,λ1α1ξ1++λnαnξn>=λ1α12++λnαn2

根据特征值的大小关系有

λ 1 α 1 2 + ⋯ + λ n α n 2 ≤ λ 1 ( α 1 2 + ⋯ + α n 2 ) = λ − 1 ∣ ∣ x ∣ ∣ 2 2 \lambda_1\alpha_1^2+\cdots+\lambda_n\alpha_n^2\leq\lambda_1(\alpha_1^2+\cdots+\alpha_n^2)=\lambda-1||x||_2^2 λ1α12++λnαn2λ1(α12++αn2)=λ1x22

所以

∣ ∣ A x ∣ ∣ 2 ∣ ∣ x ∣ ∣ 2 ≤ λ 1 = σ 1 \frac{||Ax||_2}{||x||_2}\leq\sqrt{\lambda_1}=\sigma_1 x2Ax2λ1 =σ1

定理得证!

显然,当x= ξ 1 \xi_1 ξ1时取得最大值 σ 1 \sigma_1 σ1

∣ ∣ A ξ 1 ∣ ∣ 2 2 = &lt; ξ 1 , A T A ξ 1 &gt; = &lt; ξ 1 , λ 1 ξ 1 &gt; = λ 1 ||A\xi_1||_2^2=&lt;\xi_1,A^TA\xi_1&gt;=&lt;\xi_1,\lambda_1\xi_1&gt;=\lambda_1 Aξ122=<ξ1,ATAξ1>=<ξ1,λ1ξ1>=λ1

∣ ∣ A ξ 1 ∣ ∣ 2 = λ 1 = σ 1 ||A\xi_1||_2=\sqrt{\lambda_1}=\sigma_1 Aξ12=λ1 =σ1

再回到我们的问题,需要最大化:

u 1 T X X T u 1 = ∣ ∣ X T u 1 ∣ ∣ 2 2 u_1^TXX^Tu_1=||X^Tu_1||_2^2 u1TXXTu1=XTu122

将X’代入上面证明过程中的矩阵A,则u1的方向即为A’A=(X’)‘X’=XX’最大特征值对应的特征向量的方向!

所以第一主轴已经找到,第二主轴为次大特征值对应的特征向量的方向,以此类推。

两种方法殊途同归,现在来解答关于主成分保留占比的问题。上面我们知道第一主轴对应的最大值是最大奇异值(也就是AA’最大特征值开平方),第二主轴对应的最大值是次大奇异值,以此类推。那么假设取前r大奇异值对应的主轴作为提取的主成分,则提取后的数据信息占比为:

∑ i = 1 r σ i 2 ∑ i = 1 k σ i 2 \sqrt\frac{\sum_{i=1}^r\sigma_i^2}{\sum_{i=1}^k\sigma_i^2} i=1kσi2i=1rσi2

分子是前r大奇异值的平方和,分母是所有奇异值的平方和。

到此,主成分分析PCA就讲完了,文章最后提到了奇异值,关于这个,后面的奇异值分解(SVD)文章将会详细讲解并给出其具体应用!

以上内容编辑:郭南南

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值