- 博客(7)
- 收藏
- 关注
原创 线性回归和正则化(Regularization)
1.线性回归介绍线性模型的向量形式为了解决这个问题,我们采用最小二乘估计求解参数Beta,最小二乘的几何介绍图来源(ESL p45)最小二乘的几何解释 过拟合问题:2.存在问题 过拟合所以针对过拟合问题,通常会考虑两种途径来解决:a) 减少特征的数量:-人工的选择保留哪些特征;-模型
2014-04-08 20:14:40 20175
原创 稀疏主成分分析(Sparse PCA)概述
Hui Zou et al. 2006年发表在《Journal of computational and graphical statistics》上的文章“Sparse principal component analysis” [1] 首次提出SparsePCA 的概念,截止到目前(2014年4月3日)该文章已经被引用853次(参考谷歌学术搜索数据)[2]。Literature “Sp
2014-04-03 11:10:59 14829 2
原创 日程计划
2014.3.19师兄讲坛任务分配:(Deadline:2014-3-22,周六)1.调查问卷(肖)2.胸章图案(李)3.林老师(夏)4.邮件(许)下周解决问题:1.岭回归、Regularized原因(许)2.conjugate gradient、BFGS、L-BFGS介绍(乐乐)3.骰子(肖)4.仿射变换(夏)
2014-03-20 20:55:13 733
原创 浅谈卡尔曼滤波器
1795年,高斯为了测定行星轨道提出了最小二乘估计法。1942年,维纳为了解决火力控制系统精度跟踪问题,提出了维纳滤波理论。维纳滤波理论首次将数理统计理论与线性理论有机结合,形成了对随机信号最有估计新理论~~但是频域设计法使其应用困难,人们开始寻求时域内直接设计最有滤波的方法。1960年,卡尔曼发表论文《A New Approach to Linear Filter
2014-03-07 23:08:24 3064 1
原创 主成分分析(PCA)的来龙去脉
1.介绍说起PCA,还真一时说不上来它的定义,遂百度了一下,看看度娘如何说?主成分分析 ( Principal Component Analysis , PCA )或者主元分析,是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题,计算主成分的目的是将高维数据投影到较低维空间。这几句话其实已经把PCA的主要思想讲到了,就是抽取出数据的主要因
2014-03-03 21:49:52 3392
原创 Deep Learning入门
主要探讨三个问题:1.什么是深度学习?2.他是如何实现的?3.他可以做什么?4.他的局限性?简介深度学习的概念由Hinton等人于2006年提出。2012年6月,《纽约时报》披露了Google Brain项目,吸引了公众的广泛关注。2012年11月,微软在中国天津演示了一个全自动的同声传译系统,后面支撑的关键技术也是DNN。2013年1月,在百度年会上,创始
2014-01-02 23:40:46 992
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人