主成分分析(PCA)的来龙去脉

主成分分析(PCA)是一种统计方法,用于从高维数据中提取主要因素,降低数据复杂性。它通过创建不相关的综合变量来表示原始变量,简化问题。PCA通过保留数据方差最多的成分,将多个相关变量转化为少数几个新变量。例如,买衣服时用身高作为综合指标,体现了PCA的思想。PCA由K.Pearson提出,旨在按重要性排列新特征,这些特征是原始特征的线性组合且相互独立。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.介绍

    说起PCA,还真一时说不上来它的定义,遂百度了一下,看看度娘如何说?主成分分析 ( Principal Component Analysis , PCA )或者主元分析,是一种掌握事物主要矛盾的统计分析方法,它可以从多元事物中解析出主要影响因素,揭示事物的本质,简化复杂的问题,计算主成分的目的是将高维数据投影到较低维空间。这几句话其实已经把PCA的主要思想讲到了,就是抽取出数据的主要因素,从多个变量中提取出少数几个可以代替所有变量的综合变量,目的当然就是减少变两个数,简化计算。

    最简单的一个例子就是,量体裁衣,古时候做衣服都会拿卷尺量一下胸围、腰围、臀围等等,会有好几个指标,现在我们去买衣服会发现,我们只要说一个180或者

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值