BBR 与 AIMD 共存公平性探究

一个古已有之的结论:

  • deep buffer 场景,bbr 相对 reno/cubic 等 aimd 有优势,侵占性强;
  • shallow buffer 场景,aimd 有优势,bbr 带宽被挤占。

本文用实例分析 why 并给出 how。

先看 deep buffer 场景 bbr 单挑 aimd 双流的效果,下图是标准 bbr,被虐成经理:
在这里插入图片描述
下图是用 max(bw/delay) 替代 maxbw 后的效果(小尖角是 probertt):
在这里插入图片描述

是不是好很多?max(bw/delay) 替换 maxbw 后的代码如下:

for n in range(1, len(times)):
    if n > WIN + 1:
        sublistx = ex[n - WIN : n]
        sublisty = ey[n - WIN : n]
        sublistz = ez[n - WIN : n]
        max_ex = max(sublistx)
        max_ey = max(sublisty)
        max_ez = max(sublistz)
        idxx = sublistx.index(max_ex) + n - WIN
        idxy = sublisty.index(max_ey) + n - WIN
        idxz = sublistz.index(max_ez) + n - WIN
        print(idxx, idxy, idxz)
        print(max_ex, max_ey, max_ez)
        e_x = x[idxx]
        e_y = y[idxy]
        e_z = z[idxz]
    else:
        e_x = x[n-1]
        e_y = y[n-1]
        e_z = z[n-1]
    if n / RTTWIN > 1:
        Rmin = min(r[n - RTTWIN:n])
    else:
        Rmin = R
    x[n] = x[n-1] + dt * (C*(g*e_x*Rmin)/(g*e_x*Rmin + wy[n-1] + wz[n-1]) - x[n-1])
    y[n] = y[n-1] + dt * (C*(g*e_y*Rmin)/(g*e_y*Rmin + wx[n-1] + wz[n-1]) - y[n-1])
    z[n] = z[n-1] + dt * (C*(g*e_z*Rmin)/(g*e_z*Rmin + wx[n-1] + wy[n-1]) - z[n-1])
    # 瞬时模型方程为: x[n] = C*(g*e_x*Rmin)/(g*e_x*Rmin + wy[n-1] + wz[n-1])

    if n % RTTWIN == 0:
        wx[n] = 4
        wy[n] = 4
        wz[n] = 4
    else:
        wx[n] = wx[n-1] + dt * (x[n]*Rmin - wx[n-1])
        wy[n] = wy[n-1] + dt * (y[n]*Rmin - wy[n-1])
        wz[n] = wz[n-1] + dt * (z[n]*Rmin - wz[n-1])
        # 瞬时模型方程为:wx[n] = x[n]*Rmin
    r[n] = (wx[n] + wy[n] + wz[n]) / C
    if r[n] < R:
      r[n] = R
    ex[n] = x[n]/r[n]
    ey[n] = y[n]/r[n]
    ez[n] = z[n]/r[n]

但依然做不到随行,因为 max(bw/delay) 共识属于 “仁义” 共识,而 aimd 是富含侵略性的,max(bw/delay) 能确保统计作用下 minrtt 随行,但 aimd 流比较少时依然会受 probertt 本身影响,minrtt 轻微增长甚至不变,bbr 反而更加吃亏。

这里的随行讲的是 bbr 的 rtt 可以随行 aimd,一种显然的自适应的方法就是用 (r[n-1] + Rmin)/2 替换 Rmin,理由如下:

  • 如果纯 bbr 共存,r[n-1] 接近 Rmin,除以 2 后约等于 Rmin;
  • 如果与 aimd 共存,r[n-1] 增大周期比 Rmin 更小,攀升更快,bbr 随行计算 bdp。

一般将 buffer >= bdp 时称作 deep buffer,buffer 在 bdp 内的为 shallow buffer,详情可参考雅各布森管道的阐释。

上述算法在 buffer 大于 bdp 时随行收敛效果非常好,先看 2 倍 bdp deep buffer 场景:
在这里插入图片描述

5 倍 bdp 的 deep buffer 场景:
在这里插入图片描述

接着是 100 倍:
在这里插入图片描述

但在 shallow buffer 场景就看起来显示出了侵占性:
在这里插入图片描述

可这并不怪 bbr 的侵占性,因为按照雅各布森的管道理论,在 buffer 不足一个 bdp 时,经历一次 multiplicative decrease 后,其 inflt 一定会落到 bdp 之下,而 bbr 会趁机拿到这部分空闲资源,这并不怪 bbr,而是 aimd 本质决定的。

代码如下修改即可测试:

for n in range(1, len(times)):
    if n > WIN + 1:
        sublistz = ez[n - WIN : n]
        max_ez = max(sublistz)
        idxz = sublistz.index(max_ez) + n - WIN
        e_z = z[idxz]
    else:
        e_z = z[n-1]
    if n / RTTWIN > 1:
        Rmin = min(r[n - RTTWIN:n])
        Rmax = max(r[n - RTTWIN:n])
    else:
        Rmin = R
    x[n] = x[n-1] + dt * (C*(wx[n-1])/(wx[n-1] + wy[n-1] + wz[n-1]) - x[n-1])
    y[n] = y[n-1] + dt * (C*(wy[n-1])/(wy[n-1] + wx[n-1] + wz[n-1]) - y[n-1])
    z[n] = z[n-1] + dt * (C*(g*e_z*(Rmin+r[n-1])/2)/(g*e_z*(Rmin+r[n-1])/2 + wx[n-1] + wy[n-1]) - z[n-1])

    wx[n] = wx[n-1] + I
    wy[n] = wy[n-1] + I
    if n % RTTWIN == 0:
        wz[n] = 4
    else:
        wz[n] = wz[n-1] + dt * (z[n]*(r[n-1] + Rmin)/2 - wz[n-1])
    if wx[n] + wy[n] + wz[n] > B*C*R:
        wx[n] /= 2
        wy[n] /= 2
    r[n] = (wx[n] + wy[n] + wz[n]) / C
    if r[n] < R:
      r[n] = R
    ez[n] = z[n]/r[n]

但上述 (r[n-1] + Rmin)/2 替换 Rmin 的方法促进了 bbr 的侵略性,因为 bbr 几乎会占掉一半(偏少一点,恰好接近 1/3)的资源,剩余的由其它 aimd 均分,这就从 bbr 吃亏走向了 bbr 侵占的另一个极端。

希望 aimd 和 bbr 之间完全公平的企图是徒劳的,这二者完全是不同的机制,互不通有无,奈何?

在更符合现实的统计复用场景,同步 aimd 很少见,加入 red 会更加真实,剩下的就是调参:

  • 缩小 PROBERTT_WIN,提高 Rmin 灵敏性,有助于 bbr 的 rtt 随行;
  • 削弱但不取消 max(bw / delay) 共识,增加 bbr 随行概率但不增加侵占性。

当我将 probertt 周期缩减 10 倍(稍微极端点),bbr 单挑 3 条 aimd 流,效果如下:
在这里插入图片描述

当放大 RTTWIN 到 400 时,大概就无力回天了:
在这里插入图片描述

这不难解释,因为越大的 RTTWIN,越小的 Rmin 被记忆的时间越久,生效的时间越久,rtt 越难以随行。

而以下是 E_best window 分别为 3 和 15 时的效果,设得更小,效应越弱:
在这里插入图片描述

反之,在 E_best_WIN 很大时,谦让导致恶果:
在这里插入图片描述

这也不难解释,因为最大的 bw / delay 被记忆越久,对应的 bw 生效越久,而在 aimd 场景,buffer 占据是持续变化的,bbr 要跟随上去的唯一方式就是基于更新的最大 bw / delay 对应的 bw 尽快 probe,而不是用旧的。

之所以没有彻底干掉 E_best 共识,因为在 probe 正当时,bbr 需要适可而止,bbr 需要的是事后被动跟随,而不是主动引领(《道德经》二十九章,“…物或行或随…”),前者需要更小的 E_best_WIN,后者需要 E_best 本身。

以下是代码片段:

for n in range(1, len(times)):
    if n > WIN + 1:
        sublistz = ez[n - WIN : n]
        max_ez = max(sublistz)
        idxz = sublistz.index(max_ez) + n - WIN
        e_z = z[idxz]
    else:
        e_z = z[n-1]
    if n / RTTWIN > 1:
        Rmin = min(r[n - RTTWIN:n])
        Rmax = max(r[n - RTTWIN:n])
    else:
        Rmin = R
    x[n] = x[n-1] + dt * (C*(wx[n-1])/(wx[n-1] + wy[n-1] + wz[n-1] + wv[n-1]) - x[n-1])
    y[n] = y[n-1] + dt * (C*(wy[n-1])/(wy[n-1] + wx[n-1] + wz[n-1] + wv[n-1]) - y[n-1])
    v[n] = v[n-1] + dt * (C*(wv[n-1])/(wv[n-1] + wx[n-1] + wy[n-1] + wz[n-1]) - v[n-1])
    z[n] = z[n-1] + dt * (C*(g*e_z*(Rmin + r[n-1])/2)/(g*e_z*(Rmin + r[n-1])/2 + wx[n-1] + wy[n-1] + wv[n-1]) - z[n-1])

    wx[n] = wx[n-1] + I
    wy[n] = wy[n-1] + I
    wv[n] = wv[n-1] + I
    if n % RTTWIN == 0:
        wz[n] = 4
    else:
        wz[n] = wz[n-1] + dt * (z[n]*(r[n-1] + Rmin)/2 - wz[n-1])
    if wx[n] + wy[n] + wv[n] + wz[n] > B*C*R:
        if random.choice([0, 1]) == 1:
            wx[n] /= 2
        if random.choice([0, 1]) == 1:
            wy[n] /= 2
        if random.choice([0, 1]) == 1:
            wv[n] /= 2
    r[n] = (wx[n] + wy[n] + wz[n] + wv[n]) / C
    if r[n] < R:
      r[n] = R
    ez[n] = z[n]/r[n]

真理止于经理,狼狈始于西装。

浙江温州皮鞋湿,下雨进水不会胖。

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值