轻松搞定朴素贝叶斯(有例题)

首先我们应该先弄清楚朴素贝叶斯是用来干什么的:

我们收集了大量不同质量苹果的大小、颜色、形状这三个苹果的特征信息后,如果这时又来了一个新的苹果,朴素贝叶斯就可以通过这个苹果的大小、颜色、形状判断这个苹果的质量

接下来我们会讲解公式,但是在讲解公式之前,为了大家便于理解,我们先说一下各个变量是什么:

Y就是苹果的质量

X就是苹果的大小、颜色、形状这三个特征组成的向量;x1就代表苹果的大小,x2代表苹果的颜色,x3代表苹果的形状

朴素贝叶斯可以让我们通过一个苹果的特征向量,判断这个苹果的质量是怎么样的,即在已知苹果的大小、颜色、形状是怎么样的情况下求出这个苹果的质量,也就是P(Y|X)

下面我们结合实例理解朴素贝叶斯公式:

我们收集了10个不同质量苹果的特征信息:

 朴素贝叶斯公式:

### 关于朴素贝叶斯分类器的示例题目及解答 #### 示例题目:使用朴素贝叶斯分类器进行鸢尾花种类预测 给定一组鸢尾花的数据集,该数据集中包含了四种特征(萼片长度、萼片宽度、花瓣长度和花瓣宽度),目标是根据这些特征来预测鸢尾花的具体种类。 为了完成这个任务,下面是一个完整的 Python 实现过程: ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score, classification_report def iris_naive_bayes(): # 加载鸢尾花数据集 data = load_iris() X = data.data # 特征向量 y = data.target # 类别标签 # 将数据分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建高斯朴素贝叶斯模型实例并拟合训练数据 model = GaussianNB().fit(X_train, y_train) # 使用测试数据评估模型性能 predictions = model.predict(X_test) print(f'Accuracy Score: {accuracy_score(y_test, predictions)}') print('Classification Report:') print(classification_report(y_test, predictions)) ``` 上述代码展示了如何利用 `scikit-learn` 库中的 `GaussianNB()` 函数快速构建一个基于高斯分布假设下的朴素贝叶斯分类器,并应用于鸢尾花数据集上。通过分割原始数据为训练集与验证集的方式,能够有效地衡量所建立模型的好坏程度[^2]。 此外,在处理实际问题时,如果遇到某些类别下特定属性从未观察到的情况,则可以通过引入拉普拉斯平滑技术来调整概率估计值,从而防止由于某个条件概率等于零而导致最终联合概率也为零的现象发生[^5]。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值