有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整:
fun(A)
sum = 0
for i = 1 to A.length
for j = i+1 to A.length
sum = sum + Floor((Ai+Aj)/(Ai*Aj))
return sum
给出数组A,由你来计算fun(A)的结果。例如:A = {1, 4, 1},fun(A) = 5/45/4 + 2/12/1 + 5/45/4 = 1 + 2 + 1 = 4。
Input
第1行:1个数N,表示数组A的长度(1 <= N <= 100000)。
第2 - N + 1行:每行1个数Aii(1 <= Aii <= 10^9)。
Output
输出fun(A)的计算结果。
Sample Input
3
1 4 1
Sample Output
4
首先,看这数据范围,暴力跑一遍显然不现实,妥妥的TLE。
然后发现,只有在少数情况下
A
i
+
A
j
Ai+Aj
Ai+Aj会大于等于
A
i
∗
A
j
Ai*Aj
Ai∗Aj,即$Floor((Ai+Aj)/(Ai*Aj)) $不为0。
- 其中至少一个数为1
- 两个数都是2
计算结果时:
第二种情况比较好处理,因为
(
2
+
2
)
/
(
2
∗
2
)
=
1
(2+2)/(2*2)=1
(2+2)/(2∗2)=1,所以直接求
(
c
n
t
2
−
1
)
∗
c
n
t
2
2
\frac{(cnt2-1)*cnt2}{2}
2(cnt2−1)∗cnt2(见代码)即为这种情形的和。
第一种情况,1的个数*(n-1)。(想通了再解释
然后就是,这道题的答案要用long long。
所以,就自行体会代码吧Emmm
#include<cstdio>
#define maxn 100005
int n,a[maxn],cnt2;
long long ans;
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
if(a[i]==2) cnt2++;
if(a[i]==1) ans+=n-1;
}
printf("%lld\n",cnt2*(cnt2-1)/2+ans);
}
还有一种方法,先排序,然后如果Ai是1或者2,就计算。(不过会不会有数据卡掉什么的…我很好奇。