有这样一段程序,fun会对整数数组A进行求值,其中Floor表示向下取整:
fun(A)
sum = 0
for i = 1 to A.length
for j = i+1 to A.length
sum = sum + Floor((A[i]+A[j])/(A[i]*A[j]))
return sum
给出数组A,由你来计算fun(A)的结果。例如:A = {1, 4, 1},fun(A) = [5/4] + [2/1] + [5/4] = 1 + 2 + 1 = 4。
Input
第1行:1个数N,表示数组A的长度(1 <= N <= 100000)。 第2 - N + 1行:每行1个数A[i](1 <= A[i] <= 10^9)。
Output
输出fun(A)的计算结果。
Input示例
3 1 4 1
Output示例
4
题解:
通过读题,发现式子最终可以化为,1/a+1/b。然后观察式子,发现四种情况
①a,b两个都大于1,结果0
②a,b一个为一,另一个大于1,结果1
③a,b为2,结果是1(最容易忽略就是这个点)
④a,b为1,结果是2
由此我们便可以把时间复杂度降为常数级别了
假设为1:a个,2:b个,大于2:c个
①:0
②:a*(b+c)
③:b*(b-1)/2 数学组合
④:a*(a-1)/2*2
原创代码:
#include<stdio.h>
#include<string.h>
int main()
{
int i,n;
int t;
long long a[3],ans=0;
memset(a,0,sizeof(a));
scanf("%d",&n);
for(i=0;i<n;i++)
{
scanf("%d",&t);
if(t>2)
a[0]++;
else
a[t]++;
}
ans=a[1]*(a[2]+a[0])+((a[1]-1)*a[1])+(a[2]-1)*a[2]/2;
printf("%lld",ans);
}