9. LeetCode 32:最长有效括号
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。
示例 1:
输入: “(()” 输出: 2 解释: 最长有效括号子串为 “()” 示例 2:
输入: “)()())” 输出: 4 解释: 最长有效括号子串为 “()()”
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-valid-parentheses
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
解法1:动态规划(O(n))
d p [ i ] dp[i] dp[i]表示以下标为i结尾的最长有效括号串长度:
- 第一种情况,第i个字符和第i-1个字符恰好组成一对括号,即 . . . ( ) \ ...() ...(),则有 d p [ i ] = d p [ i − 2 ] + 2 dp[i]=dp[i-2]+2 dp[i]=dp[i−2]+2
- 第二种情况,第i个字符和第 ( i − 1 − d p [ i − 1 ] ) (i-1-dp[i-1]) (i−1−dp[i−1])个字符组成一对括号,即 ( . . . ) ) \ (...)) (...)),则有$ dp[i]=dp[i−1]+2+dp[i−dp[i−1]−2]$
代码:
class Solution {
public int longestValidParentheses(String s) {
if(s==null||s.length()<2){
return 0;
}
int res = 0;
int[] dp = new int[s.length()];
if(s.charAt(0)=='('&&s.charAt(1)==')'){
dp[1] = 2;
res = 2;
}
for(int i = 2;i < s.length();i++){
if(s.charAt(i)=='('){
continue;
}
if(s.charAt(i-1)=='('){
dp[i] = dp[i-2]+2;
}else if(i-dp[i-1]-1>=0&&s.charAt(i-dp[i-1]-1)=='('){
dp[i] = dp[i-1]+2;
if(i-2-dp[i-1]>=0){
dp[i]+=dp[i-2-dp[i-1]];
}
}
res = Math.max(res, dp[i]);
}
return res;
}
}
解法2:栈(思路更清晰)
遇到$\ (\ 则 将 其 下 标 入 栈 , 遇 到 则将其下标入栈,遇到 则将其下标入栈,遇到\ )\ $出栈,并将当前元素下标与栈顶值相减。
class Solution {
public int longestValidParentheses(String s) {
if(s==null||s.length()<2){
return 0;
}
Stack<Integer> stack = new Stack<>();
stack.push(-1);
int idx = 0;
int res = 0;
while(idx<s.length()){
if(s.charAt(idx)=='('){
stack.push(idx);
}else{
stack.pop();
if(stack.isEmpty()){
stack.push(idx);
}else{
res = Math.max(res,idx-stack.peek());
}
}
idx++;
}
return res;
}
}
解法三:双指针(空间最优解)
用Left和Right两个指针标记左右括号的个数,个数相等说明成对了。
-
从左向右扫描时,Left<Right,则清零
-
从右向左扫描时,Left>Right,则清零
class Solution {
public int longestValidParentheses(String s) {
if(s==null){
return 0;
}
int left = 0, right = 0 , res = 0;
for(int i = 0 ; i < s.length() ; i++) {
if(s.charAt(i) == '('){
left++;
}else{
right++;
}
if(left==right){
res = Math.max(res, left+right);
}else if(right>left){
left = right = 0;
}
}
left = right = 0;
for(int i = s.length()-1 ; i >= 0 ; i--) {
if(s.charAt(i) == '('){
left++;
}else{
right++;
}
if(left==right){
res = Math.max(res, left+right);
}else if(right<left){
left = right = 0;
}
}
return res;
}
}
总结
第一种解法:动态规划,提前建立数组,找好规律,后续只是赋值,速度最快
第二种解法:思路最清晰,但涉及栈的操作,Stack继承自Vector,出入栈底层涉及扩容,新建数组,数组值的复制,效率会低。(可以考虑初始化时确定容量)
第三种解法:由于有两段循环,时间上要比第一种略高,但空间上从O(n)优化到O(1),还是值得学习的。