SVM (四) 软间隔和正则化

本文介绍了SVM在面临线性不可分问题时引入的软间隔最大化,允许一部分样本不满足约束,通过调整C参数实现正则化,防止过拟合。软间隔最大化的目标函数和KKT条件被用于求解支持向量,其中异常点的分类情况与松弛变量ξ的关系被详细探讨。

线性分类SVM面临的问题

在前面的讨论中,我们一直假定训练样本在样本空间中是线性可分的,存在一个超平面能够把不同类的样本完全划分开。然而,在现实任务中往往是很难找到合适的核函数将训练样本“完全划分”。即使找到了某个核函数刚好将训练集在特征空间中线性可分,但是这种情况也有可能是过拟合造成的。由于噪声值的出现,超平面会有很大的倾斜,会得到一个间隔非常小的超平面,如下图所示。

 

线性分类SVM软间隔最大化

对于上述情况,我们如果仍然希望右图还是虚线的情况(因为这种情况虽然目前分的很好,但是考虑到未来随着数据的增多,最理想的情况仍然是虚线),那我们该怎么办呢?这时我们必须引入“软间隔”概念。左图要求所有的样本必须划分正确,这称之为“硬间隔”。而“软间隔”允许SVM在一些样本上出错,即允许某些样本不满足约束:
\begin{equation}
y_i (W^T x_i + b) \geq 1
\end{equation}

 我们原始的问题是
\begin{equation}
\begin{split}
& min \ \frac{1}{2}W^TW \\
 s.t. \ &y_i (W x_i + b) \geq 1, \ i = 1,...,m
\end{split}
\end{equation}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值