线性分类SVM面临的问题
在前面的讨论中,我们一直假定训练样本在样本空间中是线性可分的,存在一个超平面能够把不同类的样本完全划分开。然而,在现实任务中往往是很难找到合适的核函数将训练样本“完全划分”。即使找到了某个核函数刚好将训练集在特征空间中线性可分,但是这种情况也有可能是过拟合造成的。由于噪声值的出现,超平面会有很大的倾斜,会得到一个间隔非常小的超平面,如下图所示。
线性分类SVM软间隔最大化
对于上述情况,我们如果仍然希望右图还是虚线的情况(因为这种情况虽然目前分的很好,但是考虑到未来随着数据的增多,最理想的情况仍然是虚线),那我们该怎么办呢?这时我们必须引入“软间隔”概念。左图要求所有的样本必须划分正确,这称之为“硬间隔”。而“软间隔”允许SVM在一些样本上出错,即允许某些样本不满足约束:
\begin{equation}
y_i (W^T x_i + b) \geq 1
\end{equation}
\begin{equation}
\begin{split}
& min \ \frac{1}{2}W^TW \\
s.t. \ &y_i (W x_i + b) \geq 1, \ i = 1,...,m
\end{split}
\end{equation}
在

本文介绍了SVM在面临线性不可分问题时引入的软间隔最大化,允许一部分样本不满足约束,通过调整C参数实现正则化,防止过拟合。软间隔最大化的目标函数和KKT条件被用于求解支持向量,其中异常点的分类情况与松弛变量ξ的关系被详细探讨。
最低0.47元/天 解锁文章
523

被折叠的 条评论
为什么被折叠?



