数据结构基本功——排序算法(直接插入排序和希尔排序)

前面两篇中冒泡排序和简单选择排序在武林中的没落,首先是因为希尔排序算法的到来,它终结了时间复杂度只能是O(n^2)的时代,同时呢,直接插入排序又因为是希尔排序算法灵魂的来源,所以,在这儿一并学习。

一、直接插入排序

1、直接插入排序的思想:

将一个记录插入到已经排好序的有序表中,从而得到一个新的,记录数增1的有序表。
可以想象一下理扑克牌的方法:
(1)设前i张牌有序的
(2)将第i+1张扑克牌的大小和前面的i张逐个比较,找到第一次比他小(大)的位置
(3)插入第i+1张牌,则i+1张牌有序;

2、直接插入排序复杂度分析

最好的情况(顺序):空间复杂度:O(1) ; 
                                    时间复杂度为:O(n) ;(共比较了n-1次,每一次都是前面的比后面的大)所以,移动次数为 0

最坏的情况(逆序):空间复杂度:O(1) ;
                                    时间复杂度为:比较的次数:O = 2+3 +4 +...+ n = (n+2)(n-1)/2,
                                    移动的次数:O=  sum(i-1+2)= sum(i+1) (i =2,..n) = 3+4+...+n+1=(n+4)(n-1)/2;
所以平均比较和移动次数越为n^2/4 ,时间复杂度为O(n^2)。

因此,同样的时间复杂度,直接插入排序比冒泡和简单选择性能好一点。

二、希尔排序

1、希尔排序的思想:

      利用跳跃分割的策略,得到基本有序序列;然后,再通过直接插入排序。
      所谓基本有序:小的关键字基本在前面,大的基本在后面,不大不小的基本在中间。
关键实现,在于跳跃分割策略的选取:
将相距某个“增量”的记录组成一个子序列,这样才能保证子序列内分别进行直接插入排序后得到的是基本有序
注意:增量序列的最后一个增量必须是1

2、希尔排序复杂度分析

经过研究表明:当增量序列为delta[k] = 2^(t-k+1) (0≤k≤t≤  floor[log2(n+1)])时, 
                         可以获得不错的效率,其时间复杂度为O(n^1.5),要好于直接排序的O(n^2)。

三、C++实现

#include <iostream>

using namespace std;

//希尔排序
void shellsort(int *a, int length)
{
	int i, j;
	int increment = length; //增量初始值
	do
	{
		increment = increment / 3 + 1; //增量的选取
		for (i = increment ; i < length; i++) //直接插入排序
		{
			if (a[i] < a[i - increment])
			{
				int temp = a[i];  //暂存a[i]   
				for (j = i-increment; j > 0 && temp < a[j]; j -= increment)
					a[j + increment] = a[j];
				a[j + increment] = temp;
			}
		}
	}while (increment > 1);
}
//直接插入排序
void insertsort(int *a, int length)
{
	for (int i = 1; i < length ; i++)
	{
		if (a[i] < a[i - 1])   //判断是否有序
		{
			int temp = a[i];   //保留a[i]的值
			int j;
			for ( j = i -1; j >= 0 && temp <a[j]; j--)
			{
				a[j+1] = a[j];  //开始后移
			}
			a[j+1] = temp; //找到了a[i]插入的位置
		}
	}
}
int main(int argc, char *argv[])
{

	int a[] = { 1,3,5,6,7,2,10,8 };
    //1.希尔排序
	shellsort(a, sizeof(a) / sizeof(int));
    //2.直接插入排序
    //insertsort(a, sizeof(a) / sizeof(int));
	for (int i = 0; i < sizeof(a) / sizeof(int); i++)
		cout << a[i] << " ";
	cin.get();
	return 0;
}

 

展开阅读全文

没有更多推荐了,返回首页