在开发与数据监测和数据可视化有关的系统时,我们会需要根据最新的数据对图形进行更新。下面的代码模拟了这种情况,单击Start按钮时会更新数据并重新绘制图形使得曲线看上去在移动一样,单击Stop按钮则停止更新数据。
from time import sleep
from threading import Thread
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.widgets import Button
fig, ax = plt.subplots()
#设置图形显示位置
plt.subplots_adjust(bottom=0.2)
#初始实验数据
range_start, range_end, range_step = 0, 1, 0.005
t = np.arange(range_start, range_end, range_step)
s = np.sin(4*np.pi*t)
l, = plt.plot(t, s, lw=2)
#自定义类,用来封装两个按钮的单击事件处理函数
class ButtonHandler:
def __init__(self):
self.flag = True
self.range_s, self.range_e, self.range_step = 0, 1, 0.005
#线程函数,用来更新数据并重新绘制图形
def threadStart(self):
while self.flag:
sleep(0.02)
self.range_s += self.range_step
self.range_e += self.range_step
t = np.arange(self.range_s, self.range_e, self.range_step)
ydata = np.sin(4*np.pi*t)
#更新数据
l.set_xdata(t-t[0])
l.set_ydata(ydata)
#重新绘制图形
plt.draw()
def Start(self, event):
self.flag = True
#创建并启动新线程
t = Thread(target=self.threadStart)
t.start()
def Stop(self, event):
self.flag = False
callback = ButtonHandler()
#创建按钮并设置单击事件处理函数
axprev = plt.axes([0.81, 0.05, 0.1, 0.075])
bprev = Button(axprev, 'Stop')
bprev.on_clicked(callback.Stop)
axnext = plt.axes([0.7, 0.05, 0.1, 0.075])
bnext = Button(axnext, 'Start')
bnext.on_clicked(callback.Start)
plt.show()
温馨提示:单击文章顶部作者名字旁边浅蓝色的“Python小屋”进入公众号,关注后可以查看更多内容!