卷积的计算

本文介绍了卷积的概念及其在图像处理和深度学习中的应用。讲解了卷积的两种计算方法,包括TensorFlow中的 Toeplitz matrix 实现和傅里叶变换方法,并探讨了卷积在不同领域的适用性。此外,还讨论了卷积核的性质以及在深度学习中卷积和反卷积的区别。
摘要由CSDN通过智能技术生成

什么是卷积?

TensorFlow中的卷积可以算在高级图像处理部分。主要目的是对信号进行变换处理,得到特征。卷积也可以叫滤波(filter),在整个特征处理中,位置如下图。

图1特征处理

 

卷积的作用就是求特征,具体应用例如传统的双边滤波进行磨皮到深度学习进行人脸识别等都是的。这里我们讲一下具体卷积的计算方法。

图2 卷积的作用图

图3 手工卷积核的效果图(锐化)

注:传统关于图像处理,是为了通过某个点周围的环境对这个点的影响而获得的特征(也就是卷积核),因而出现了锐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值