TP、TN、FP、FN超级详细解析

本文通过西瓜数据集,详细解析了模型评估中的TP、TN、FP、FN等概念,并介绍了查准率与查全率的计算方法及其意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以西瓜数据集为例,我们来详细解释一下什么是TP、TN、FP以及FN。

一、基础概念

  • TP:被模型预测为正类的正样本
  • TN:被模型预测为负类的负样本
  • FP:被模型预测为正类的负样本
  • FN:被模型预测为负类的正样本
    在这里插入图片描述

二、通俗理解(以西瓜数据集为例)

以西瓜数据集为例,我们来通俗理解一下什么是TP、TN、FP、FN。

  • TP:被模型预测为好瓜的好瓜(是真正的好瓜,而且也被模型预测为好瓜)
  • TN:被模型预测为坏瓜的坏瓜(是真正的坏瓜,而且也被模型预测为坏瓜)
  • FP:被模型预测为好瓜的坏瓜(瓜是真正的坏瓜,但是被模型预测为了好瓜)
  • FN:被模型预测为坏瓜的好瓜(瓜是真正的好瓜,但是被模型预测为了坏瓜)

三、查准率、查全率

还是以西瓜数据集为例

(1)查准率、查全率代表的含义
  • 查准率:模型挑出来的西瓜中有多少比例是好瓜
  • 查全率:所有的好瓜中有多少比例是被模型挑出来的
(2)如何计算查准率、查全率

查准率用P来表示:
在这里插入图片描述
查全率用R来表示:
在这里插入图片描述

### 解决 Deepseek 服务器繁忙错误的综合方法 #### 本地化部署的优势与实践 为了应对 Deepseek 访问量激增带来的服务器繁忙问题,一种有效的解决方案是进行本地化部署。这种方法的核心优势在于减少对外部网络依赖并提供更稳定的服务质量[^1]。 对于企业或团队而言,在内部环境中搭建专属实例可以显著降低延迟时间,并且可以根据具体需求定制资源分配策略。此外,这种方式也便于实施更为严格的安全措施以保护敏感数据。 #### 系统性能优化的具体举措 除了考虑本地化之外,针对现有基础设施开展一系列针对性强的技术改造同样重要: - **硬件升级**:增加内存容量、更换更快处理器等手段可以直接提升单台机器的工作效率;同时购置高性能存储设备有助于加快读写速度。 - **架构调整**:引入分布式计算框架能够分散请求压力至多个节点上处理,从而实现水平扩展能力的最大化利用。例如采用微服务设计模式将不同功能模块解耦合运行于独立进程中,既提高了灵活性又增强了容错性[^2]。 - **软件层面调优**:深入剖析应用程序逻辑找出瓶颈所在之处进而做出相应修改——比如精简不必要的业务流程环节或是重构低效算法结构。另外还可以借助缓存机制(如 Redis)、异步消息队列(RabbitMQ/Kafka)等方式进一步改善交互响应特性[^3]。 ```python import redis cache = redis.Redis(host='localhost', port=6379, db=0) def get_data(key): cached_value = cache.get(key) if cached_value is not None: return cached_value.decode('utf-8') actual_value = fetch_from_database(key) # 假设这是获取数据库中的真实值函数 cache.setex(key, 3600, actual_value) # 设置过期时间为一个小时 return actual_value ```
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

虾狗PhD

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值