目录
引言
机器学习的核心目标之一是构建出具有良好性能的模型。为了评估模型的性能,我们依赖于一系列重要的指标。在本文中,我们将深入探讨这些指标,包括True Positive(TP)、True Negative(TN)、False Positive(FP)、False Negative(FN)、精确率、召回率、准确率、F1-score以及目标检测领域中常用的均值平均精度(mAP)。
分类标准
示例:癌症检测
假设我们正在开发一个癌症检测模型,我们有12个患者样本,其中4个是患有癌症的正例,8个是健康的负例。
# 模型预测结果
predicted = [0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0]
# 实际标签
actual = [0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0]
预测值=1 | 预测值=0 | |
真实值=1 |
3(TP) | 1(FP) |
真实值=0 | 1(TN) | 7(FN) |
- TP = 3(实际患病并被正确预测出来的数量)
- FP = 1(实际健康但被错误预测为患病的数量)
- TN = 1(实际患病但被错误预测为健康的数量)
- FN = 7