“深入理解机器学习性能评估指标:TP、TN、FP、FN、精确率、召回率、准确率、F1-score和mAP”

目录

引言

分类标准

示例:癌症检测

1. 精确率(Precision)

2. 召回率(Recall)

3. 准确率(Accuracy)

4. F1-score

5. mAP(均值平均精度)

总结与通俗解释


引言

机器学习的核心目标之一是构建出具有良好性能的模型。为了评估模型的性能,我们依赖于一系列重要的指标。在本文中,我们将深入探讨这些指标,包括True Positive(TP)、True Negative(TN)、False Positive(FP)、False Negative(FN)、精确率、召回率、准确率、F1-score以及目标检测领域中常用的均值平均精度(mAP)

分类标准

示例:癌症检测

假设我们正在开发一个癌症检测模型,我们有12个患者样本,其中4个是患有癌症的正例8个是健康的负例

# 模型预测结果
predicted = [0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0]
# 实际标签
actual =    [0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0]
预测值=1 预测值=0

真实值=1

3(TP)

1(FP)

真实值=0 1(TN) 7(FN)
  • TP = 3(实际患病并被正确预测出来的数量)
  • FP = 1(实际健康但被错误预测为患病的数量)
  • TN = 1(实际患病但被错误预测为健康的数量)
  • FN = 7࿰
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值