1. TP TN FP FN
GroundTruth 预测结果
TP(True Positives): 真的正样本 = 【正样本 被正确分为 正样本】
TN(True Negatives): 真的负样本 = 【负样本 被正确分为 负样本】
FP(False Positives): 假的正样本 = 【负样本 被错误分为 正样本】
FN(False Negatives):假的负样本 = 【正样本 被错误分为 负样本】
2. Precision(精度)和 Recall(召回率)
即 预测正确的部分 占 预测结果 的比例
即 预测正确的部分 占 GroundTruth 的比例
3. IoU(Intersection over Union)
4. AP
(1) 找出 预测结果 中 TP(正确的正样本) 和 FP(误分为正样本) 的检测框
本文介绍了目标检测中常用的评估指标,包括TP(真正例)、TN(真负例)、FP(假正例)和FN(假负例),以及基于这些指标的Precision(精度)、Recall(召回率)、IoU(交并比)和AP(平均精度)。还详细阐述了如何计算AP,并解释了mIoU和mAP的概念。
订阅专栏 解锁全文
8093

被折叠的 条评论
为什么被折叠?



