(转) 果巨的模板

常用头文件和宏

/*
 #pragma warning (disable: 4786)
 #pragma comment (linker, "/STACK:0x800000")
 */
#include <cassert>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <string>
#include <vector>
#include <list>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <algorithm>
#include <iterator>
#include <utility>
#include <bitset>
using namespace std;

template< class T > T _abs(T n){
    return (n < 0 ? -n : n);
}
template< class T > T _max(T a, T b){
    return (!(a < b) ? a : b);
}
template< class T > T _min(T a, T b){
    return (a < b ? a : b);
}
template< class T > T sq(T x){
    return x * x;
}
template< class T > T gcd(T a, T b){
    return (b != 0 ? gcd<T>(b, a%b) : a);
}
template< class T > T lcm(T a, T b){
    return (a / gcd<T>(a, b) * b);
}
template< class T > bool inside(T a, T b, T c){
    return a<=b && b<=c;
}
#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define F(i, n) for(int (i)=0;(i)<(n);++(i))
#define rep(i, s, t) for(int (i)=(s);(i)<=(t);++(i))
#define urep(i, s, t) for(int (i)=(s);(i)>=(t);--(i))
#define repok(i, s, t, o) for(int (i)=(s);(i)<=(t) && (o);++(i))
#define MEM0(addr) memset((addr), 0, sizeof((addr)))
#define MP(x, y) make_pair(x, y)
#define REV(s, e) reverse(s, e)
#define SET(p) memset(pair, -1, sizeof(p))
#define CLR(p) memset(p, 0, sizeof(p))
#define MEM(p, v) memset(p, v, sizeof(p))
#define CPY(d, s) memcpy(d, s, sizeof(s))
#define READ(f) freopen(f, "r", stdin)
#define WRITE(f) freopen(f, "w", stdout)
#define SZ(c) (int)c.size(
#define PB(x) push_back(x)
#define ff first
#define ss second
#define ll long long
#define ld long double
#define pii pair< int, int >
#define psi pair< string, int >
#define ls l,mid,rt<<1
#define rs mid+1,r,rt<<1|1
#define debug(x) cout << #x << " = " << x << endl

字符串算法

KMP算法
int s[MAXN],t[MAXM];
int m,n;
int nxt[MAXM];
void getnext(){
    nxt[0] = -1;
    int i = 0, j = -1;
    while(i < m){
        while(j != -1 && t[i] != t[j]) j = nxt[j];
        if(t[++i] == t[++j]) nxt[i] = nxt[j];
        else nxt[i] = j;
    }
}
int kmp(){
    int ans = -1;
    getnext();
    int i = 0,j = 0;
    while(i < n){
        while(j != -1 && s[i] != t[j]) j = nxt[j];
        i++,j++;
        if(j >= m){
            ans = i - m + 1;
            return ans;
        }
    }
    return ans;
}
扩展KMP
/*
* 给出模板串S和串T,长度分别为Slen和Tlen,要求在线性时间内,对于每个S[i](0<=i<Slen),求
*  出S[i..Slen-1]与T的最长公共前缀长度,记为extend[i](或者说,extend[i]为满足S[i..i+z-1]==T[0..z-1]的最大的z值)。扩展KMP可以用来解决很多字符串问题,如求一个字符串的最长回文子串和最长重复子串。

例如:hdu4333
给一个数字,每一次把它的最后一位拿到最前面,一直那样下去,分别求形成的数字小于,等于和大于原来数的个数。
例如:134可以形成134,341,413三个数,所以分别是1,1,1。

分析:
由于长度为len的字符串形成题目要求的串的个数为len,那么我们可以把原来的两个串T连接起来形成字符串S,然后找S的每
个后缀的前len个元素即可。

这里主要是如何比较的问题,对于字符串的比较,我们可以先求出他们的最长公共前缀长度,然后只需要比较一次就可以知道结果了。那么最长公共前缀怎么求,由于这里是一个串T与另一个串S,来求S的所有后缀与T的最长公共前缀长度,所以用扩展
KMP。如果extend[i]>=len,就说明与原来的相等了,否则如果S[i+extend[i]]<T[extend[i]]就说明小于,否则就是大
于。
*/
#include <stdio.h>
#include <string.h>
#define N 500010

int next[N];
int nextval[N];
int extend[N];

char S[N];
char T[N];

void GetNext(char *T)
{
    int a=0;
    int Tlen=strlen(T);
    next[0]=Tlen;
    while(a<Tlen-1&&T[a]==T[a+1]) a++;
    next[1]=a;
    a=1;
    for(int k=2;k<Tlen;k++)
    {
        int p=a+next[a]-1,L=next[k-a];
        if((k-1)+L>=p)
        {
            int j=(p-k+1)>0? p-k+1:0;
            while(k+j<Tlen&&T[k+j]==T[j]) j++;
            next[k]=j;
            a=k;
        }
        else next[k]=L;
    }
}

void GetExtend(char *S,char *T)
{
    int a=0;
    GetNext(T);
    int Slen=strlen(S);
    int Tlen=strlen(T);
    int MinLen=Slen<Tlen? Slen:Tlen;
    while(a<MinLen&&S[a]==T[a]) a++;
    extend[0]=a;
    a=0;
    for(int k=1;k<Slen;k++)
    {
        int p=a+extend[a]-1,L=next[k-a];
        if((k-1)+L>=p)
        {
            int j=(p-k+1)>0? p-k+1:0;
            while(k+j<Slen&&j<Tlen&&S[k+j]==T[j]) j++;
            extend[k]=j;
            a=k;
        }
        else extend[k]=L;
    }
}

void NextVal(char *T)
{
    int i=0,j=-1;
    nextval[0]=-1;
    int Tlen=strlen(T);
    while(i<Tlen)
    {
        if(j==-1||T[i]==T[j])
        {
            i++;
            j++;
            if(T[i]!=T[j]) nextval[i]=j;
            else  nextval[i]=nextval[j];
        }
        else j=nextval[j];
    }
}

int main()
{
    int Slen,Tlen,i;
    int t,tt=1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%s",S);
        strcpy(T,S);
        strcat(S,T);
        GetExtend(S,T);
        Tlen=strlen(T);
        Slen=strlen(S);
        NextVal(T);
        int MOD=Tlen-nextval[Tlen];
        int temp=1;
        if(Tlen%MOD==0) temp=Tlen/MOD;
        int ans1=0,ans2=0,ans3=0;
        for(i=0;i<Tlen;i++)
        {
            if(extend[i]>=Tlen) ans2++;
            else if(S[i+extend[i]]<T[extend[i]]) ans1++;
            else ans3++;
        }
        printf("Case %d: %d %d %d\n",tt++,ans1/temp,ans2/temp,ans3/temp);
    }
    return 0;
}
Manacher 最长回文子串
/*
 * 求最长回文子串 
 * 例如今年多校一道题
 */
//给一个序列,让求其最大子序列
//这个序列由三段组成,第一段和第二段对称,第一段和第三段一样
//manacher算法求得p[i]
//枚举第二段的起点和长度,得到结果
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std ;
const int maxn = 2e5 + 10 ;
int str[maxn] ;
int p[maxn] ;
void pk(int n)
{
    int i;
    int mx = 0;
    int id=0;
    for(i=0; i<n; i++)
    {
        if( mx > i )
            p[i] = min( p[2*id-i], mx-i );
        else
            p[i] = 1;
        for(; str[i+p[i]] == str[i-p[i]] && i - p[i] >= 0 && i + p[i] < n; p[i]++);
        if( p[i] + i > mx )
        {
            mx = p[i] + i;
            id = i;
        }
    }
}
int main()
{
    int t  ;
    int cas = 0 ;
    int  n ;
    scanf("%d" , &t) ;
    while(t--)
    {
        scanf("%d" , &n) ;
        for(int i = 0;i <= 2*n+1;i++)
        p[i] = 0 ;
        int len = 0 ;
        str[len++] = -1 ;
        for(int i = 1;i <= n;i++)
        {
            scanf("%d" , &str[len++]) ;
            str[len++] = -1 ;
        }
        int ans = 1 ;
        pk(len) ;
        for(int i = 2;i < len-1 ;i += 2)
          for(int j = ans;j <= p[i] ;j += 2)
            if(p[i + j -1]>= j)
              ans = j;
        ans = ans/2*3 ;
        printf("Case #%d: ",++cas) ;
        cout << ans << endl;
    }
    return 0 ;
}
字符串最小表示
//O(n),返回最小表示字符串起始位置
//最大表示把s[i+k] > s[j+k]改<,后一句同
string s;
cin >> s;      
int L = s.length();
s = s+s;
int i = 0, j = 1,k;
while(i<L && j<L){
   for(k=0;k<L;k++)
       if(s[i+k] != s[j+k])break;
           if(k == L)break;
   if(s[i+k]>s[j+k])i=i+k+1;
   else if(s[i+k]<s[j+k])j=j+k+1;
   if(i==j)j++;
}
cout << min(i,j) << endl;
字符串hash
//选择大素数
字符数组版:
unsigned int BKDRHash(char *str)  //处理字符数组
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0;
    while (*str)
    {
        hash = hash * seed + (*str++);
    }
    return (hash & 0x7FFFF);  //1111111111111111111
}
字符串版:
unsigned int BKDRHash(string str)  //处理字符串
{
    unsigned int seed = 131; // 31 131 1313 13131 131313 etc..
    unsigned int hash = 0,i=0,len=str.length();
    while (i<len)
    {
        hash = hash * seed + str[i++];
    }
    return (hash & 0x7FFFF);  //0x7FFFF为十六进制,=524287=219-1
}

数学

素数筛选
//prime[0]存素数个数
int prime[MAXN+5];
void init(){
    memset(prime,0,sizeof(prime));
    for(int i = 2; i <= MAXN ; i++){
        if(!prime[i]) prime[++prime[0]] = i;
        for(int j = 1;j <= prime[0] && prime[j] <= MAXN/i;j++){
            prime[prime[j]*i] = 1;
            if(i % prime[j] == 0) break;
        }
    }
}
大区间素数筛选
//poj 2689
/*
输入区间[l,u],其中l和u为int范围的整数,区间最大为1000000。求出[l,u]中,相邻素数只差最大和最小的素数对。当存在多个时,输出较小的素数对。
题解:l,u范围太大,不能直接求int范围的素数。而区间间隔比较小,只有1e6,而且对于int范围内的合数来说,最小质因子必定小于2^16。所以可以求出[l,u]中合数,转而求出素数,然后暴力枚举所有素数对即可。
如何求区间[l,u]中的合数:上面已经说了,合数的最小质因子小于2^16,即小于50000。所以先求出小于50000的所有素数。则区间[l,u]中的合数,必定可以表示为小于50000的素数的倍数。对于素数p来说,令a=(l-1)/p+1,b=u/p。则枚举j=a到b,j*p可以枚举所有[l,u]中质因子含有p的合数。枚举所有小于50000的素数,然后用上述方式枚举倍数,即可找出[l,u]中所有的合数。
由于l,u在int范围,所以不能直接用数组标记。需要加个偏移量,取l,则数组大小小于1e6的f[0,u-l],即可标记。
接着枚举区间中所有的相邻素数对即可。
特别注意:由于1不是小于50000的素数的倍数,所以在与合数相斥中,会被当成素数。需要特别处理下。
*/
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <iostream>
#include <algorithm>
using namespace std;
const int INF=1e9;
const int maxn=5e4+10;
const int maxm=1e6+10;
int l,u,prime[maxn],vis[maxn],f[maxm],t;
void init()//求出50000内的素数,int范围内的合数最小质因子必定小于2^16。
{
    int i,j,k,m;
    t=0;
    m=(int)sqrt(maxn+0.5);
    memset(vis,0,sizeof(vis));
    for(i=2;i<=m;i++)
    {
        if(!vis[i])
        {
            for(j=i*i;j<maxn;j+=i)
            vis[j]=1;
        }
    }
    for(i=2;i<maxn;i++)if(!vis[i])prime[t++]=i;
}
int main()
{
    init();
    while(cin>>l>>u)
    {
        if(l==1)l=2;//注意l=1会出问题。
        int i,j,k,a,b;
        memset(f,0,sizeof(f));
        for(i=0;i<t;i++)
        {
            a=(l-1)/prime[i]+1;
            b=u/prime[i];
            for(j=a;j<=b;j++)if(j>1)f[j*prime[i]-l]=1;//[l,u]区间小于1e6,而l,u数值范围为int,所以偏移l们就能用数组存了
        }
        int p=-1,max_ans=-1,min_ans=INF,x1,y1,x2,y2;
        for(i=0;i<=u-l;i++)//暴力枚举。。
        {
            if(f[i]==0)
            {
                if(p==-1){p=i;continue;}
                if(max_ans<i-p){max_ans=i-p;x1=p+l;y1=i+l;}
                if(min_ans>i-p){min_ans=i-p;x2=p+l;y2=i+l;}
                p=i;
            }
        }
        if(max_ans==-1)cout<<"There are no adjacent primes."<<endl;
        else cout<<x2<<","<<y2<<" are closest, "<<x1<<","<<y1<<" are most distant."<<endl;
    }
    return 0;
}
合数分解
//fatCnt为因子个数
//factor[i][0]是第i个素因子,factor[i][1]是第i个素因子的个数
int prime[MAXN+5];
void init(){
    memset(prime,0,sizeof(prime));
    for(int i = 2; i <= MAXN ; i++){
        if(!prime[i]) prime[++prime[0]] = i;
        for(int j = 1;j <= prime[0] && prime[j] <= MAXN/i;j++){
            prime[prime[j]*i] = 1;
            if(i % prime[j] == 0) break;
        }
    }
}
long long factor[100][2];
int fatCnt;
int getFactors(long long x){
    fatCnt = 0;
    long long tmp = x;
    for(int i=1;prime[i]<=tmp/prime[i];i++){
        factor[fatCnt][1] = 0;
        if(tmp % prime[i] == 0){
            factor[fatCnt][0] = prime[i];
            while(tmp%prime[i] == 0){
                factor[fatCnt][1]++;
                tmp/=prime[i];
            }
            fatCnt++;
        }
    }
    if(tmp != 1){
        factor[fatCnt][0] = tmp;
        factor[fatCnt++][1] = 1;
    }
    return fatCnt;
}
扩展欧几里得算法(求解 ax+ay = gcd 的解和逆元素)
//返回d = gcd(a,b);和对应等式中的x,y
long long extend_gcd(long long a,long long b,long long &x,long long &y){
    if(a == 0 && b == 0) return -1;
    if(b == 0) {x = 1; y = 0; return a;}
    long long d = extend_gcd(b,a%b,y,x);
    y -= a/b*x;
    return d;
}
//求逆元素
//ax = 1(mod n)
long long mod_reverse(long long a,long long n){
    long long x,y;
    long long d = extend_gcd(a,n,x,y);
    if(d == 1) return (x % n + n) % n;
    else return -1;
}
逆元
//a < m 且 a 和 m 互质
long long inv(long long a,long long m){
    if(a == 1)return 1;
    return inv(m%a,m)*(m-m/a)%m; 
}

//欧拉函数,mod为素数且a和m互质,pow_m为快速幂取mod
long long inv(long long a,long long mod) {
    return pow_m(a,mod-2,mod);
}
欧拉函数
//筛欧拉函数
int euler[MAXN+5];
long long eular(long long n){
    memset(euler,0,sizeof(euler));
    euler[1] = 1;
    for(int i=2;i <= MAXN;i++){
        if(!euler[i]){
            for(int j = i; j <= MAXN ; j += i){
                if(!euler[j]) euler[j] = j;
                euler[j] = euler[j] / i * (i-1);
            }
        }
    }
}

//求单个欧拉函数
long long euler(long long n){
    long long ans = n;
    for(int i = 2;i * i <= n;i++){
        if(n % i == 0){
            ans -= ans / i;
            while(n % i == 0) n /= i;
        }
    }
    if(n > 1) ans -= ans/n;
    return ans;
}

//线性筛求出欧拉函数和素数表
bool check[MAXN + 10];
int phi[MAXN + 10];
int prime[MAXN + 10];
int tot;
void phi_ans_prime_table(int N){
    memset(check,false,sizeof(check));
    phi[1] = 1;
    tot = 0;
    for(int i = 2;i <= N;i++){
        if(!check[i]){
            prime[tot++] = i;
            phi[i] = i - 1;
        }
        for(int j = 0;j < tot;j++){
            if(i * prime[j] > N) break;
            check[i * prime[j]] = true;
            if(i % prime[j] == 0){
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }else{
                phi[i * prime[j]] = phi[i] * (prime[j] - 1);
            }
        }
    }
}
数论中若干结论
1.素数定理:给你一个整数N(N<1e9),如果小于10^N的整数中素数的个数为π(N),求π(N)的位数是多少。 
思路:题目的数据量很大,直接求肯定TLE,所以考虑素数定理。 
素数定理:记π(N)是<=N的素数个数,那么有π(N)跟N/ln(N)是等阶无穷小,极限为1
一个数x的位数可以用lg(x)+1来求,所以本题中lg(N/InN)+1就是所求,因为N=10^N,所以位数=lg(10^N)-lg(In(10^N))+1=N-lgN-lg(In(10))+1.
int main()
{
    double n,m;
    while(~scanf("%lf",&n)) {
        m=(n-log10(n)-log10(log(10)));
        printf("%d\n",(int)m+1);
    }
    return 0;
}
2.定理:设a > 1, m,n > 0,那么有gcd(a^m-1,a^n-1) = a^gcd(m,n) - 1
3.定理:设a > b, gcd(a,b) = 1, 那么gcd(a^m - b^m,a^n - b^n) = a^gcd(m,n) - b^gcd(m,n)
4.定理:设G = gcd(C(n,1),C(n,2),....C(n,n-1)),那么
    (1)n为素数,那么答案就是n
    (2)n为多个素因子,那么答案就是1
    (3)n只有一个素因子,那么答案就是该素因子
5.定理:设F_n为Fib数,那么有gcd(F_m,F_n) = F_gcd(m,n)
6.定理:给定两个互素的正整数A和B,那么它们最大不能组合的数为A*B-A-B,不能组合的数的个数为
num = (A - 1)*(B - 1) / 2
7.定理:sigma(gcd(i,N)){i:1~N} = sigma(phi[N/d]){d|N}
8.定理:(n+1)*lcm(C(n,0),C(n,1),...,C(n,n-1),C(n,n)) = lcm(1,2,3,...,n+1)
9.定理:任何n个连续的正整数的乘积均可被n!整除
两个推广结论:(1)如果p是素数,那么C(p,1),C(p,2)...C(p,p-1)均可被p整除
           (2)如果p是素数,那么有(x+y...+w) = (x^p + y^p + ... w^p)(mod p)


lucas(组合数取MOD,复杂度跟mod相关)
网赛题目:
#include<iostream>  
#include<cstdio>  
#include<algorithm>  
#include<cmath>  
#include<cstring>  
#include<queue>  
#include<string>  
typedef long long LL;  
using namespace std;  
LL p;  
LL A[12],M[12];  
LL mod_mul(LL a,LL b,LL mod)  
{  
    LL ret=0;  
    while(b)  
    {  
        if(b&1) ret=(ret+a)%mod;  
        a=(a+a)%mod;  
        b>>=1;  
    }  
    return ret;  
}  
LL qpow(LL a,LL b)  
{  
    LL ans;  
    for(ans=1;b;b>>=1,a=a*a%p)  
        if(b&1)ans=mod_mul(ans,a,p);  
    return ans;  
}  
LL getc(LL n,LL m)  
{  
    if(n<m)return 0;  
    if(m>n-m)m=n-m;  
     LL  s1=1,s2=1;  
    for(LL i=0;i<m;i++)  
    {  
        s1=mod_mul(s1,(n-i),p);  
        s2=mod_mul(s2,(i+1),p);  
    }  
    return mod_mul(s1,qpow(s2,p-2),p);  
}  
LL lucas(LL n,LL m)  
{  
    if(m==0)return 1;  
    return mod_mul(getc(n%p,m%p),lucas(n/p,m/p),p);  
}  

LL Extended_Euclid(LL a,LL b,LL &x,LL &y)     
{  
    LL d;  
    if(b==0)  
    {  
        x=1;y=0;  
        return a;  
    }  
    d=Extended_Euclid(b,a%b,y,x);  
    y-=a/b*x;  
    return d;  
}  

LL crt(LL a[],LL w[],LL len)      
{  
    LL i,d,x,y,m,n,ret;  
    ret=0;  
    n=1;  
    for (i=0;i<len;i++)  
        n*=w[i];  
    for (i=0;i<len;i++)  
    {  
        m=n/w[i];  
        d=Extended_Euclid(w[i],m,x,y);  
        //ret=(ret+y*m*a[i])%n;  
        ret=ret%n+mod_mul(mod_mul(y,m,n),a[i],n);  
    }  
    return (n+ret%n)%n;  
}  

int main()  
{  

    LL n, m,k;  
    int t;  
    scanf("%d",&t);  
    while(t--)  
    {  
        scanf("%I64d%I64d%I64d", &n, &m, &k);  
        p=1;  

        for(LL i=0;i<k;i++)  
        {  
            scanf("%I64d",&p);  
            M[i]=p;  
            A[i]=lucas(n, m);  
        }  

        printf("%I64d\n",crt(A,M,k));  
    }  
    return 0;  
}
//注意上面的快速乘法是取mod版本
//对于不取mod版本,防止爆ll
ll calc(ll a,ll b){
    ll ans = 1;
    while(b){
        if(b & 1){
            double judge = 1.0 * INF / ans;
            if(a > judge) return -1;
            ans *= a;
        }
        b >>= 1;
        if(a > INF1 && b > 0) return -1;
        a = a * a;
    }
    return ans;
}
常见的组合数模型
第一类Stirling数 s(p,k) 
s(p,k)的一个的组合学解释是:将p个物体排成k个非空循环排列的方法数。
s(p,k)的递推公式: s(p,k)=(p-1)*s(p-1,k)+s(p-1,k-1) ,1<=k<=p-1
边界条件:s(p,0)=0 ,p>=1  s(p,p)=1  ,p>=0

递推关系的说明:
考虑第p个物品,p可以单独构成一个非空循环排列,这样前p-1种物品构成k-1个非空循环排列,方法数为s(p-1,k-1);
也可以前p-1种物品构成k个非空循环排列,而第p个物品插入第i个物品的左边,这有(p-1)*s(p-1,k)种方法。

第二类Stirling数 S(p,k)

S(p,k)的一个组合学解释是:将p个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法数。
k!S(p,k)是把p个人分进k间有差别(如:被标有房号)的房间(无空房)的方法数。
   
S(p,k)的递推公式是:S(p,k)=k*S(p-1,k)+S(p-1,k-1) ,1<= k<=p-1
边界条件:S(p,p)=1 ,p>=0    S(p,0)=0 ,p>=1
  
递推关系的说明:
考虑第p个物品,p可以单独构成一个非空集合,此时前p-1个物品构成k-1个非空的不可辨别的集合,方法数为S(p-1,k-1);
也可以前p-1种物品构成k个非空的不可辨别的集合,第p个物品放入任意一个中,这样有k*S(p-1,k)种方法。
  
第一类斯特林数和第二类斯特林数有相同的初始条件,但递推关系不同。

Bell数

Bell数的定义:第n个Bell数表示集合{1,2,3,...,n}的划分方案数,即:B[0] = 1;

每一个Bell数都是第二类Stirling数的和,即

第二类Stirling数的意义是:S(n,k)表示将n个物体划分成k个非空的不可辨别的(可以理解为盒子没有编号)集合的方法
数。很明显,每一个Bell是对应的第二类Stirling数之和。

Bell三角形的构造方法:
第一行第一个元素是1,即a[1][1] = 1
对于n>1,第n行第一项等于第n-1行最后一项,即a[n][1] = a[n-1][n-1];
对于m,n>1,第n行第m项等于它左边和左上方的两个数之和,即a[n][m] = a[n][m-1] + a[n-1][m-1];
Bell数的预处理:
void Bell(int T[],int MOD)
{
    B[0] = 1;
    B[1] = 1;
    T[0] = 1;
    for(int i=2;i<N;i++)
    {
        T[i-1] = B[i-1];
        for(int j=i-2;j>=0;j--)
            T[j] = (T[j]+T[j+1])%MOD;
        B[i] = T[0];
    }
}

错排公式

如lightoj 1095 求n个数的排列,前m个中有k个在自己位置上的方法数
设D[n]为n个元素的错排数. 
于是我们有D[1] = 0 D[2] = 1; 
D[n] = (D[n-1] + D[n-2]) * (i-1) 
考虑问题本身,我们首先从前m个数选k个数不动.即C(m,k)。对于没有选的前m中的m-k个数肯定是参与了错排,而后面n-m个数中参加错排的个数不定,所以我们枚举一个后面n-m个数中选出i(0 <= i <= n - m)个数有没有参与错排。总共就有n-k-i参与了错排. 
综上所述,ans公式就是C[m][k] * sigma(C[n-m][i] * D[n-k-i]) % mod; 
预处理出组合数和错排数,然后就乱搞了。 
注意有个坑点。。D[0]要赋值为1

int m,n,k;
ll D[maxn+5];
ll C[maxn+5][maxn+5];
void init(){
    C[0][0] = 1;
    rep(i,1,maxn){
        C[i][0] = C[i][i] = 1;
        rep(j,1,i-1) C[i][j] = (C[i-1][j-1] + C[i-1][j]) % mod;
    }
    D[1] = 0,D[0] = D[2] = 1;
    rep(i,3,maxn) D[i] = (i-1) * (D[i-1] + D[i-2]) % mod;
}
ll solve(int n,int m,int k){
    ll ans = 0;
    rep(i,0,n-m) ans = (ans + C[n-m][i] * D[n-k-i]) % mod;
    return ans * C[m][k] % mod; 
}
int main(){
    //READ("in.txt");
    int t,kase = 1;
    scanf("%d",&t);
    init();
    while(t--){
        scanf("%d%d%d",&n,&m,&k);
        printf("Case %d: %llu\n",kase++,solve(n,m,k));
    }
    return 0;
}

博弈论

Bash Game——巴什博奕
只有一堆n个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取m个。
(1)最后取光者得胜。
bool solve(int n,int m){return n%(m+1);}
(2)最后取光者失败。
bool solve(int n,int m){return (n-1)%(m+1);}
Wythoff Game——威佐夫博奕
有两堆各若干个物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,规定每次至少取一个,多者不限。
(1)最后取完者获胜。
const double fai=(sqrt(5.0)+1)*0.5;//黄金分割数
bool solve(int a,int b){
if(a>b)swap(a,b);
int k = b - a;
return a!=int(k*fai);
}
(2)最后取完者失败。(试解/没刷过例题)
const double fai=(sqrt(5.0)+1)*0.5;//黄金分割数
bool solve(int a,int b){
if(a>b)swap(a,b);
if(a==0)return b!=1;
if(a==2)return b!=2;
return b!=int(a/fai)+a+1;
}
树上删边游戏:
给你一些圆圈的圆心坐标和半径,保证这些圆圈是包含或者相离的。现在两个人做博弈操作,拿掉一个圆圈,然后这个圆圈所包含的都要移除掉。两个人一直拿下去,直到某个人找不到一个可以移除的圈他就输了。
思路
学习的姿势。这是一个树上删边游戏模型;
首先按照半径升序排序,然后对于每一个圆找第一个包含它的圆,然后连一条边。建树完成。
叶子节点的SG值为0;
中间节点的 SG 值为它的所有子节点的 SG 值加 1 后的异或和;
这里可以建立成森林或者直接一棵树,没有太大区别。建成一棵树估计要方便一些吧。

struct Point{
    int x,y,r;
}point[MAXN];
int cmp(Point a,Point b){
    return a.r < b.r;
}
int dist(int i,int j){
    return (ll)(point[i].x - point[j].x) * (point[i].x - point[j].x) + (point[i].y-point[j].y) * (point[i].y - point[j].y);
}
struct Edge{
    int to,next;
}edge[MAXN];
int head[MAXN],tail;
void add(int from,int to){
    edge[tail].to = to;
    edge[tail].next = head[from];
    head[from] = tail++;
}
int dfs(int from){
    int res = 0;
    for(int i = head[from];i != -1; i = edge[i].next)
        res ^= dfs(edge[i].to)+1;
    return res;
}
int main(){
    //READ("in.txt");
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        scanf("%d",&n);
        rep(i,0,n-1){
            scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].r);
        }
        sort(point,point+n,cmp);
        tail = 0;
        MEM(head,-1);
        rep(i,0,n-1){
            int flag = 0;
            rep(j,i+1,n-1){
                int rr = (ll)point[j].r * point[j].r;
                int dis = dist(i,j);
                if(rr > dis){  
                    flag = 1;
                    add(j,i);
                    break;
                }
            }
            if(!flag) add(n,i);
        }
        if(dfs(n) != 0)
            puts("Alice");
        else
            puts("Bob");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值