3.使用最小花费爬楼梯(easy)

1.题目链接:

2.题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。​

请你计算并返回达到楼梯顶部的最低花费。

示例 1:​
           输入:cost = [10,15,20]​
           输出:15​
解释:
           你将从下标为 1 的台阶开始。​
           支付 15 ,向上爬两个台阶,到达楼梯顶部。​
           总花费为 15 。​

示例 2:​
           输入:cost = [1,100,1,1,1,100,1,1,100,1]​
           输出:6​
解释:
           你将从下标为 0 的台阶开始。​






支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。​支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。​支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。​支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。​支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。​支付 1 ,向上爬一个台阶,到达楼梯顶部。​

               总花费为 6 。​
注意注意:
     在这道题中,数组内的每一个下标 [0, n - 1]  表示的都是楼层,而顶楼的位置其实是在 n  位置!!!

3. 解法(动态规划)
算法思路:
解法一:
1. 状态表示:
        这道题可以根据「经验 + 题目要求」直接定义出状态表示:​
        第一种:以 i  位置为结尾,巴拉巴拉​
          dp[i]  表示:到达 i  位置时的最小花费。(注意:到达 i  位置的时候,i  位置的钱不需要     算上)

2. 状态转移方程:
        根据最近的一步,分情况讨论:

先到达 i - 1  的位置,然后支付 cost[i - 1] ,接下来走一步走到 i  位置:

dp[i - 1] + csot[i - 1]

先到达 i - 2  的位置,然后支付 cost[i - 2] ,接下来走一步走到 i  位置:

dp[i - 2] + csot[i - 2]

3. 初始化:
        从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1  位置的值。容易得到           dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0  层和第 1  层上。​

4. 填表顺序:
        根据「状态转移方程」可得,遍历的顺序是「从左往右」。

5. 返回值:
        根据「状态表示以及题目要求」,需要返回 dp[n]  位置的值。​

Java算法代码:

class Solution {
    public int minCostClimbingStairs(int[] cost) {
        // 1.创建dp表
        // 2.初始化
        // 3.填表
        // 4.返回值

        // 处理边界条件
        int n = cost.length;
        int [] dp = new int[n+1];
        dp[n-1] = cost[n-1]; dp[n-2] = cost[n-2];
        for( int i = n-3;i >= 0;i--){
            dp[i] = Math.min(dp[i+1],dp[i+2]) + cost[i];
        }
        return Math.min(dp[0],dp[1]);

    }
}

运行结果:

动态规划:这里要想想,实际上,从下朝上时候,会散开(比较难)。

而反其道而行之,这样的话,到n的位置(有 n-1 和 n-2 )两个位置,然后不停的找到这两个位置的最小值。

当读者能够看到我最后的这个乱七八糟的线,就能明白这道题目了。

解法二:这里就是从头开始

Java算法代码:

class Solution{
    public int minCostClimbingStairs(int[] cost){
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = cost.length;
        int[] dp = new int[n + 1];
        for(int i = 2; i <= n; i++)
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        return dp[n];
    }
}

运行结果:

---------------------------------------------------------------------------------------------------------------------------------

记住要做的几件事:

1.状态定义

2.状态转移方程

3.初始化

4.填表顺序

5.返回值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值