1.题目链接:
2.题目描述:
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:
你将从下标为 1 的台阶开始。
支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:
你将从下标为 0 的台阶开始。
◦ | 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。支付 1 ,向上爬一个台阶,到达楼梯顶部。 |
总花费为 6 。
注意注意:
在这道题中,数组内的每一个下标 [0, n - 1] 表示的都是楼层,而顶楼的位置其实是在 n 的位置!!!
3. 解法(动态规划)
算法思路:
解法一:
1. 状态表示:
这道题可以根据「经验 + 题目要求」直接定义出状态表示:
第一种:以 i 位置为结尾,巴拉巴拉
dp[i] 表示:到达 i 位置时的最小花费。(注意:到达 i 位置的时候,i 位置的钱不需要 算上)
2. 状态转移方程:
根据最近的一步,分情况讨论:
先到达 i - 1 的位置,然后支付 cost[i - 1] ,接下来走一步走到 i 位置: | |
▪ |
dp[i - 1] + csot[i - 1] ;
▪ | 先到达 i - 2 的位置,然后支付 cost[i - 2] ,接下来走一步走到 i 位置: |
dp[i - 2] + csot[i - 2] 。
3. 初始化:
从我们的递推公式可以看出,我们需要先初始化 i = 0 ,以及 i = 1 位置的值。容易得到 dp[0] = dp[1] = 0 ,因为不需要任何花费,就可以直接站在第 0 层和第 1 层上。
4. 填表顺序:
根据「状态转移方程」可得,遍历的顺序是「从左往右」。
5. 返回值:
根据「状态表示以及题目要求」,需要返回 dp[n] 位置的值。
Java算法代码:
class Solution {
public int minCostClimbingStairs(int[] cost) {
// 1.创建dp表
// 2.初始化
// 3.填表
// 4.返回值
// 处理边界条件
int n = cost.length;
int [] dp = new int[n+1];
dp[n-1] = cost[n-1]; dp[n-2] = cost[n-2];
for( int i = n-3;i >= 0;i--){
dp[i] = Math.min(dp[i+1],dp[i+2]) + cost[i];
}
return Math.min(dp[0],dp[1]);
}
}
运行结果:
动态规划:这里要想想,实际上,从下朝上时候,会散开(比较难)。
而反其道而行之,这样的话,到n的位置(有 n-1 和 n-2 )两个位置,然后不停的找到这两个位置的最小值。
当读者能够看到我最后的这个乱七八糟的线,就能明白这道题目了。
解法二:这里就是从头开始
Java算法代码:
class Solution{
public int minCostClimbingStairs(int[] cost){
// 1. 创建 dp 表
// 2. 初始化
// 3. 填表
// 4. 返回值
int n = cost.length;
int[] dp = new int[n + 1];
for(int i = 2; i <= n; i++)
dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
return dp[n];
}
}
运行结果:
---------------------------------------------------------------------------------------------------------------------------------
记住要做的几件事:
1.状态定义
2.状态转移方程
3.初始化
4.填表顺序
5.返回值