38.最长递增子序列(medium)

1.题目链接:

300. 最长递增子序列 - 力扣(LeetCode)300. 最长递增子序列 - 给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。 示例 1:输入:nums = [10,9,2,5,3,7,101,18]输出:4解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。示例 2:输入:nums = [0,1,0,3,2,3]输出:4示例 3:输入:nums = [7,7,7,7,7,7,7]输出:1 提示: * 1 <= nums.length <= 2500 * -104 <= nums[i] <= 104 进阶: * 你能将算法的时间复杂度降低到 O(n log(n)) 吗?https://leetcode.cn/problems/longest-increasing-subsequence/2.题目描述:

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。​
    子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例   如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。​

示例 1:​
输入:nums = [10,9,2,5,3,7,101,18]​
输出:4​
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。​示例 2:​
输入:nums = [0,1,0,3,2,3]​
输出:4​
示例 3:​
输入:nums = [7,7,7,7,7,7,7]​
输出:1​

提示:
             1 <= nums.length <= 2500​
             -10^4 <= nums[i] <= 10^4​
3. 解法(暴搜 -> 记忆化搜索 -> 动态规划):​
算法思路:
暴搜:
a. 递归含义:给 dfs  一个使命,给他一个数 i ,返回以 i  位置为起点的最长递增子序列的长度;

b. 函数体:遍历 i  后面的所有位置,看看谁能加到 i  这个元素的后面。统计所有情况下的最大值。​
c. 递归出口:因为我们是判断之后再进入递归的,因此没有出口~​

记忆化搜索:
a. 加上一个备忘录;
b. 每次进入递归的时候,去备忘录里面看看;​

c. 每次返回的时候,将结果加入到备忘录里面。

动态规划:
a. 递归含义 -> 状态表示;​
b. 函数体 -> 状态转移方程;​
c. 递归出口 -> 初始化。​

Java算法代码:

class Solution {
    public int lengthOfLIS(int[] nums) {
        int n = nums.length;
        int [] dp = new int[n];
        int ret = 0;
        Arrays.fill(dp,1);
        //填表顺序:从后往前
        for(int i = n-1; i>=0;i--){
            for(int j = i + 1; j < n; j++){
                if(nums[j] > nums[i])
                    dp[i] = Math.max(dp[i] , dp[j] + 1);
            }
            ret = Math.max(ret,dp[i]);
        }
        return ret;

        // 记忆化搜索
        int ret = 0;
        int n = nums.length;
        int [] memo = new int[n];

        for(int i = 0; i < n; i++)
            ret = Math.max(ret,dfs(i,nums,memo));
        return ret;
    }

    public int dfs(int pos, int[] nums, int[] memo){
        if(memo[pos] != 0) return memo[pos];
        int ret = 1;
        for(int i = pos + 1; i < nums.length ; i++)
            if(nums[i] > nums[pos])
                ret = Math.max(ret,dfs(i,nums,memo) + 1);
        memo[pos] = ret;
        return ret;
    }
}

运行结果:

递归展开:

这里的动态规划,是从后往前(里面是从前往后,这里的max函数,已经是来更新正确的)

然后后面的暴力搜索:从前往后(每次固定一个数),利用结果携带的值来更新正确的值。

这里引入记忆化搜索优化,会使得,前面已经记录的值,直接使用。不用再次递归。

逻辑展开:

需要注意的是,当笔者使用动态规划得到的dp数组中的值和memo中的值是一样的。

得到这个结果的时候,就应该意识到一些事情。----谜题解开了

---------------------------------------------------------------------------------------------------------------------------------

记住,相信你的递归函数,它可以做到!

记住,不理解时候,去尝试手动展开!

记住,逻辑展开(你不可能对所有的题目都进行手动展开)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值