1.第N个泰波那契数(easy)

1.题目链表:

1137. 第 N 个泰波那契数 - 力扣(LeetCode)1137. 第 N 个泰波那契数 - 泰波那契序列 Tn 定义如下: T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2给你整数 n,请返回第 n 个泰波那契数 Tn 的值。 示例 1:输入:n = 4输出:4解释:T_3 = 0 + 1 + 1 = 2T_4 = 1 + 1 + 2 = 4示例 2:输入:n = 25输出:1389537 提示: * 0 <= n <= 37 * 答案保证是一个 32 位整数,即 answer <= 2^31 - 1。https://leetcode.cn/problems/n-th-tribonacci-number/submissions/630389956/2.题目描述:

泰波那契序列 Tn 定义如下: ​
T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2​      给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

示例 1:​
输入:n = 4​
输出:4​
解释:

               T_3 = 0 + 1 + 1 = 2​
               T_4 = 1 + 1 + 2 = 4​
示例 2:​
               输入:n = 25​
               输出:1389537​
3. 解法(动态规划)
算法流程
1. 状态表示:
        这道题可以「根据题目的要求」直接定义出状态表示:dp[i]  表示:第 i  个泰波那契数的值。​

2. 状态转移方程:
        题目已经非常贴心的告诉我们了:

dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]

3. 初始化:

从我们的递推公式可以看出,dp[i]  在i = 0 以及 i = 1  的时候是没有办法进行推导的,因dp[-2]  或 dp[-1]  不是一个有效的数据。​
因此我们需要在填表之前,将 0, 1, 2  位置的值初始化。题目中已经告诉我们

dp[0] = 0,dp[1] = dp[2] = 1

4. 填表顺序:
        毫无疑问是「从左往右」。因为先要知道左边的,才能算出来右边的。

5. 返回值:
        应该返回 dp[n]  的值。​

Java算法代码:

class Solution {
    public int tribonacci(int n) {
        // 空间优化
        // 处理边界情况
        if(n == 0) return 0;
        if(n ==1 || n==2) return 1;

        int a = 0,b=1,c=1,d=0;

        for(int i = 3;i <=n;i++){
            d = a + b + c;
            a = b; b=c; c=d;
        }
        return d;
    }
}

运行结果:

动态规划: 这道题目给定很多,状态的定义dp[i],以及状态转移方程dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3],初始化dp[0] = 0,dp[1] = dp[2] = 1 填表顺序(左 --> 右,以及返回值dp[n]。

---------------------------------------------------------------------------------------------------------------------------------

记住要做的几件事:

1.状态定义

2.状态转移方程

3.初始化

4.填表顺序

5.返回值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值