使用BCELoss出现RuntimeError: Found dtype Long but expected Float

本文介绍了一种在使用PyTorch的BCELoss损失函数时遇到的数据类型不匹配问题及解决方案。当尝试将交叉熵损失函数替换为BCELoss时,由于预期目标张量类型为float而非int,导致运行时错误。文章提供了调整目标张量类型的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        今天在跑模型的时候,发现了以下的报错

RuntimeError: Found dtype Long but expected Float

        代码部分只是将crossentropyloss换成了BCELoss,那么这里的报错就发生在BCELoss的部分

loss_fn = torch.nn.BCELoss()
logit = logit.view(logit.size()[0]*logit.size()[1],-1)
batch_label = batch_label.view(batch_label.size()[0]*batch_label.size()[1],-1)
crossentropyloss = loss_fn(logit,batch_label)

        crossentropyloss要求batch_label必须为torch.int类型,这里BCELoss的batch_label类型为torch.float
        因此这段代码需要修改一下:

loss_fn = torch.nn.BCELoss()
logit = logit.view(logit.size()[0]*logit.size()[1],-1)
batch_label = batch_label.view(batch_label.size()[0]*batch_label.size()[1],-1)
batch_label = batch_label.to(torch.float)
crossentropyloss = loss_fn(logit,batch_label)


————————————————
来自:https://blog.csdn.net/znevegiveup1/article/details/124778676

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值