【OpenCV】获取轮廓(连通域)的面积、周长、矩形度、圆形度、宽长比、周径比

14 篇文章 0 订阅

1、轮廓面积获取函数

输入当前轮廓点集,输出该轮廓点集的面积

area = contourArea(contours[t]);//计算轮廓面积

2、轮廓周长获取函数

输入当前轮廓点集,第二个参数:bool closed:表示轮廓是否封闭的
输出该轮廓点集的周长

len = arcLength(contours[t], true);//计算轮廓周长

3、轮廓圆形度计算

原本计算公式:

网上的公式一般是这个:e=(4π 面积)/(周长 * 周长);
这里将周长等价于2pi*r;

area = contourArea(contours[t]);//计算轮廓面积
len = arcLength(contours[t], true);//计算轮廓周长
roundness = (4 * CV_PI * area) / (len * len);//圆形度

4、矩形度计算

//先计算最小外接矩形的面积:
RotatedRect minrect = minAreaRect(contours[t]);    //最小外接矩形
area = contourArea(contours[t]);//计算轮廓面积
int minrectmianji = minrect.size.height * minrect.size.width;
if (minrectmianji == 0)rectangularity = 0;
else rectangularity = area / minrectmianji;

注意点:
minrect.size是个数组,表述的是尺寸即:width,height

5、宽长比计算

宽长比:最小外接矩形的长轴与短轴的比值

RotatedRect rbox = minAreaRect(contours[i]);
fabs(rbox.size.width * 1.0 / rbox.size.height - 1) < 0.1     //表示宽长比在1附近+-0.1内浮动

6、周径比计算

周径比的周即周长,径是指上面找到的轮廓最小外接矩形的长的一条边

lenratio = len / (minrect.size.height > minrect.size.width ? minrect.size.height : minrect.size.width);

总结:最终示例

#include <opencv2/opencv.hpp>
#include <iostream>
#include "windows.h"
#include <stdio.h>
#include <time.h>
#include <math.h>  
//#include "My_ImageProssing_base.h"
#define WINDOW_NAME "【程序窗口】"            //为窗口标题定义的宏

using namespace cv;
using namespace std;

RNG g_rng(12345);

int main()
{
    //改变控制台字体颜色
    system("color 02");

    //读取图像
    Mat src_image = imread("D:\\opencv_picture_test\\阈值处理\\硬币.png", 1);
    //出错判断
    if (!src_image.data)
    {
        cout << "src image load failed!" << endl;
        return -1;
    }
    //显示原图
    namedWindow("原图", WINDOW_NORMAL);
    imshow("原图", src_image);

    //高斯滤波去噪声
    Mat blur_image;
    GaussianBlur(src_image, blur_image, Size(3, 3), 0, 0);
    imshow("GaussianBlur", blur_image);

    //灰度变换与二值化
    Mat gray_image, binary_image;
    cvtColor(blur_image, gray_image, COLOR_BGR2GRAY);
    threshold(gray_image, binary_image, 100, 255, THRESH_BINARY);
    imshow("binary", binary_image);

    //形态学闭操作(粘合断开的区域)
    Mat morph_image;
    Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
    morphologyEx(binary_image, morph_image, MORPH_CLOSE, kernel, Point(-1, -1), 1);
    imshow("morphology", morph_image);

    //查找所有外轮廓
    vector< vector<Point> > contours;
    vector<Vec4i> hireachy;
    findContours(binary_image, contours, hireachy, RETR_EXTERNAL, CHAIN_APPROX_NONE, Point());

    //定义结果图
    Mat result_image = Mat::zeros(src_image.size(), CV_8UC3);

    //drawContours(result_image, contours, -1, Scalar(0, 0, 255), 1, 8, hireachy);//画出所有轮廓

    //初始化周长、面积、圆形度、周径比
    double len = 0, area = 0, roundness = 0, lenratio = 0;
    float rectangularity;

    //循环找出所有符合条件的轮廓
    for (size_t t = 0; t < contours.size(); t++)
    {
        Scalar color = Scalar(g_rng.uniform(0, 255),
            g_rng.uniform(0, 255), g_rng.uniform(0, 255));//任意值
        //条件:过滤掉小的干扰轮廓
        Rect rect = boundingRect(contours[t]);        //垂直边界最小矩形
        if (rect.width < 10)
            continue;
        //画出找到的轮廓
        drawContours(result_image, contours,t,color,1, 8, hireachy);

        //绘制轮廓的最小外结矩形
        RotatedRect minrect = minAreaRect(contours[t]);    //最小外接矩形
        int minrectmianji = minrect.size.height * minrect.size.width;
        Point2f P[4];            //四个顶点坐标
        minrect.points(P);
        for (int j = 0; j <= 3; j++)
        {
            line(result_image, P[j], P[(j + 1) % 4], color, 1);
        }
        cout << "最小外接矩形尺寸"<< minrect.size << endl;//最小外接矩形尺寸
        cout << "最小外接矩形面积" << minrectmianji << endl;//最小外接矩形尺寸

        //绘制轮廓的最小外结圆
        Point2f center; float radius;
        minEnclosingCircle(contours[t], center, radius);        //最小外接圆
        circle(result_image, center, radius, color,1);

        //计算面积、周长、圆形度、周径比
        area = contourArea(contours[t]);//计算轮廓面积
        len = arcLength(contours[t], true);//计算轮廓周长
        roundness = (4 * CV_PI * area) / (len * len);//圆形度
        if (minrectmianji == 0)rectangularity = 0;
        else rectangularity = area / minrectmianji;
        //周径比,这里的周即周长,径是指上面找到的轮廓最小外接矩形的长的一条边
        lenratio = len / (minrect.size.height > minrect.size.width ? minrect.size.height : minrect.size.width);

        //输出结果
        cout << "轮廓" << t << ":" << endl;
        cout << "周长:" << len << endl;
        cout << "面积:" << area << endl;
        cout << "圆形度:" << roundness << endl;
        cout << "矩形度:" << rectangularity << endl;
        cout << "周径比:" << lenratio << endl;

    }
    //显示结果
    namedWindow("轮廓图", WINDOW_NORMAL);
    imshow("轮廓图", result_image);

    waitKey(0);
    return 0;
}

原图:

原图

轮廓效果图:

1

 参数一览:

参数

参考链接:

https://blog.csdn.net/Lemon_jay/article/details/89519627

https://blog.csdn.net/qq_42604176/article/details/105588018

https://blog.csdn.net/duiwangxiaomi/article/details/92565308

————————————————
来源:https://blog.csdn.net/qq_42604176/article/details/105614368

OpenCV可以使用不同的方法来计算轮廓面积。在引用\[1\]和引用\[2\]中,使用了不同的方法来计算连通域面积。在引用\[1\]中,使用了一个掩码模板来计算非零像素的个数,即连通域的像素个数。而在引用\[2\]中,直接使用了OpenCV的contourArea函数来计算轮廓面积。这两种方法都可以得到轮廓面积。 另外,在引用\[3\]中提到了计算圆形矩形的公式。圆形可以通过公式e = (4π面积) / (周长 * 周长)来计算,其中周长可以等价于2πr。矩形可以通过计算最小外接矩形面积轮廓面积之比来得到。 总结起来,OpenCV提供了多种方法来计算轮廓面积,可以根据具体需求选择合适的方法进行计算。 #### 引用[.reference_title] - *1* *2* [opencv计算轮廓面积的两种方法](https://blog.csdn.net/DK_csdn1/article/details/121664860)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [【OpenCV获取轮廓(连通域)的面积周长矩形圆形宽长比、周径比](https://blog.csdn.net/dou3516/article/details/127262712)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值